Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(21): 10409-10449, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39360601

RESUMEN

Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.


Asunto(s)
Ciclotrones , Radiofármacos , Radiofármacos/química , Humanos , Cromatografía , Radioisótopos/química , Radioisótopos/aislamiento & purificación , Nanomedicina Teranóstica , Medicina Nuclear
2.
Chemistry ; 30(28): e202400434, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38466910

RESUMEN

We present a detailed investigation on the coordination chemistry of [nat/203Pb]Pb(II) with chelators H4PYTA and H4CHX-PYTA. These chelators belong to the family of ligands derived from the 18-membered macrocyclic backbone PYAN and present varying degrees of rigidity due to the presence of either ethyl or cyclohexyl spacers. A complete study of the stable Pb(II) complexes is carried out via NMR, X-Ray crystallography, stability constant determination and computational studies. While these studies indicated that Pb(II) complexation is achieved, and the thermodynamic stability of the resulting complexes is very high, a certain degree of fluxionality does exist in both cases. Nevertheless, radiolabeling studies were carried out using SPECT (single photon emission computed tomography) compatible isotope lead-203 (203Pb, t1/2=51.9 h), and while both chelators complex the radioisotope, the incorporation of carboxylate pendant arms appears to be detrimental towards the stability of the complexes when compared to the previously described amide analogues. Additionally, incorporation of a cyclohexyl spacer does not improve the kinetic inertness of the system.

3.
Inorg Chem ; 63(44): 21177-21193, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39436680

RESUMEN

The effects of replacing nitrogen with sulfur atoms in the 18-membered macrocycle of the H2macropa chelator on the binding affinity and stability of "intermediate" (radio)metal [203Pb]Pb2+ and [213Bi]Bi3+ complexes are investigated. The 1,4,10,13-tetraoxo-7,16-diazacyclooctadecane backbone was replaced with derivatives containing sulfur in the 1,4- or the 1,4,10,13-positions to yield the novel chelators H2S2macropa (N4O4S2) and H2S4macropa (N4O2S4), respectively. Trends on the nat/203Pb- and nat/213Bi-complex stability constants, coordination chemistry, radiolabeling, and kinetic inertness were assessed via potentiometric titrations, UV-vis spectroscopy, NMR spectroscopy, X-ray crystallography and density functional theory (DFT) calculations. 1H-207Pb NMR spectroscopy confirmed the involvement of backbone S and/or O donors in the metal coordination sphere. Overall, the trend demonstrated that increasing the softness of the donor atoms within the ligand backbone decreased the thermodynamic stability and kinetic inertness of both the Pb2+ and Bi3+ complexes. Conversely, DFT calculations with mock compounds dimethyl ether (DME) and dimethyl sulfide (DMS) demonstrated enhanced affinity of the S atom to both Pb2+ and Bi3+ with DMS compared to DME evinced by large ΔG° values for both Pb2+ and Bi3+ complexes. The decreased stability of Pb/Bi-Sxmacropa (x = 0, 2, 4) upon increased sulfur atom incorporation may be a result of the increased steric strain within the macrocyclic backbone upon sulfur atom introduction. Nonetheless, [203Pb]Pb2+ and [213Bi]Bi3+ labeling (pH = 7, 30 min reaction time; 10-4-10-8 M chelator) resulted in both S2macropa2- and macropa2- attaining similarly high radiolabeling efficiency. Meanwhile, S4macropa2- only possessed the ability to complex [213Bi]Bi3+. Both [203Pb][Pb(macropa)] and [203Pb][Pb(S2macropa)] remained greater than 97% intact when challenged against human serum over 72 h. The results of this study reveal the effects of incorporating sulfur donor atoms into macrocyclic chelators for [203Pb]Pb2+ and [213Bi]Bi3+ radiopharmaceuticals.


Asunto(s)
Bismuto , Quelantes , Teoría Funcional de la Densidad , Radiofármacos , Azufre , Azufre/química , Quelantes/química , Quelantes/síntesis química , Radiofármacos/química , Radiofármacos/síntesis química , Bismuto/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/efectos de la radiación , Estructura Molecular , Radioisótopos/química , Modelos Moleculares , Compuestos Macrocíclicos/química
4.
Inorg Chem ; 63(4): 1745-1758, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38230993

RESUMEN

A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.


Asunto(s)
Ciclamas , Plomo , Humanos , Medicina de Precisión , Quelantes/química , Ligandos
5.
Inorg Chem ; 62(50): 20549-20566, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36608341

RESUMEN

Radiolanthanides and actinides are aptly suited for the diagnosis and treatment of cancer via nuclear medicine because they possess unique chemical and physical properties (e.g., radioactive decay emissions). These rare radiometals have recently shown the potential to selectively deliver a radiation payload to cancer cells. However, their clinical success is highly dependent on finding a suitable ligand for stable chelation and conjugation to a disease-targeting vector. Currently, the commercially available chelates exploited in the radiopharmaceutical design do not fulfill all of the requirements for nuclear medicine applications, and there is a need to further explore their chemistry to rationally design highly specific chelates. Herein, we describe the rational design and chemical development of a novel decadentate acyclic chelate containing five 1,2-hydroxypyridinones, 3,4,3,3-(LI-1,2-HOPO), referred to herein as HOPO-O10, based on the well-known octadentate ligand 3,4,3-(LI-1,2-HOPO), referred to herein as HOPO-O8, a highly efficient chelator for 89Zr[Zr4+]. Analysis by 1H NMR spectroscopy and mass spectrometry of the La3+ and Tb3+ complexes revealed that HOPO-O10 forms bimetallic complexes compared to HOPO-O8, which only forms monometallic species. The radiolabeling properties of both chelates were screened with [135La]La3+, [155/161Tb]Tb3+, [225Ac]Ac3+ and, [227Th]Th4+. Comparable high specific activity was observed for the [155/161Tb]Tb3+ complexes, outperforming the gold-standard 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, yet HOPO-O10 surpassed HOPO-O8 with higher [227Th]Th4+ affinity and improved complex stability in a human serum challenge assay. A comprehensive analysis of the decadentate and octadentate chelates was performed with density functional theory for the La3+, Ac3+, Eu3+, Tb3+, Lu3+, and Th4+ complexes. The computational simulations demonstrated the enhanced stability of Th4+-HOPO-O10 over Th4+-HOPO-O8. This investigation reveals the potential of HOPO-O10 for the stable chelation of large tetravalent radioactinides for nuclear medicine applications and provides insight for further chelate development.


Asunto(s)
Quelantes , Radiofármacos , Humanos , Radiofármacos/química , Ligandos , Quelantes/química
6.
Inorg Chem ; 61(25): 9638-9649, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35704752

RESUMEN

As an element-equivalent theranostic pair, lead-203 (203Pb, 100% EC, half-life = 51.92 h) and lead-212 (212Pb, 100% ß-, half-life = 10.64 h), through the emission of γ rays and an α particle in its decay chain, respectively, can aid in the development of personalized targeted radionuclide treatment for advanced and currently untreatable cancers. With these isotopes currently being used in clinical trials, an understanding of the relationship between the chelator structure, ability to incorporate the radiometal, and metal-complex stability is needed to help design appropriate chelators for clinical use. Herein, we report an investigation into the effect of ring size in macrocyclic chelators where pyridine, an intermediate Lewis base, acts as an electron donor toward lead. Crown-4Py (4,7,13,16-tetrakis(pyridin-2-ylmethyl)-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane), cyclen-4Py (1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane), and NOON-2Py (7,16-bis(pyridin-2-ylmethyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane) were synthesized and analyzed for their ability to coordinate Pb2+. Metal complex stability was investigated via [203Pb]Pb2+ radiolabeling studies, 1H NMR spectroscopy, X-ray crystallography, and potentiometry. With the smallest macrocyclic backbone, cyclen-4Py had the highest radiochemical yield, while, in descending order, crown-4Py and NOON-2Py had the lowest. Thermodynamic stability constants (log KML) of 19.95(3), 13.29(5), and 11.67 for [Pb(Cyclen-4Py)]2+, [Pb(Crown-4Py)]2+, and [Pb(NOON-2Py)]2+, respectively, correlated with their radiochemical yields. The X-ray crystal structure of the least stable complexes [Pb(NOON-2Py)]2+ revealed a hemidirected Pb2+ center, as reflected by a void within the coordination sphere, and [Pb(Crown-4Py)]2+ showed an average Pb-N pyridine interatomic distance of >3 Å. By contrast, the crystal structure of [Pb(Cyclen-4Py)]2+ showed shorter Pb-N pyridine interactions, and in solution, only one highly symmetric isomer existed for this complex, whereas conformational flexibility was observed for both [Pb(Crown-4Py)]2+ and [Pb(NOON-2Py)]2+ at the NMR timescale. This study illustrates the importance of the macrocyclic backbone size when incorporating bulky electron-donor groups into the design of a macrocyclic chelator as it affects the accessibility of lead to the donor arms. Our results show that cyclen-4Py is a promising chelator for future studies with this theranostic pair.


Asunto(s)
Complejos de Coordinación , Ciclamas , Quelantes , Complejos de Coordinación/química , Cristalografía por Rayos X , Plomo , Ligandos , Piridinas/química
7.
Inorg Chem ; 61(24): 9119-9137, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35678752

RESUMEN

A new decadentate chelator, H2ampa, was designed to be a potential radiopharmaceutical chelator component. The chelator involves both amide and picolinate functional groups on a large non-macrocyclic, ether-bridged backbone. With its large scaffold, H2ampa was paired with [nat/203Pb]Pb2+, [nat/213Bi]Bi3+, and natLa3+/[225Ac]Ac3+ ions. Nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry were used to study the non-radioactive metal complexes. A single crystal of [Bi(ampa)](NO3) was obtained; its asymmetric, 10-coordinate complex structure was revealed by X-ray diffraction. Optimal conformations of the metal complexes were assessed by density functional theory studies to provide further structural information. Solution studies providing thermodynamic insights into metal complex formation revealed H2ampa coordinated Bi3+, Pb2+, and La3+ ions to obtain pM values of 26, 14.8, and 15.1, respectively. Preliminary concentration-dependent radiolabeling experiments were carried out between H2ampa and three different radiometals to evaluate their compatibility for radiopharmaceutical applications. The chelator radiolabeled [203Pb]Pb2+, [213Bi]Bi3+, and [225Ac]Ac3+ in short reaction times (7-30 min), at dilute concentrations, and under mild conditions. Thus, H2ampa was proven to be a versatile chelator able to well coordinate a small range of radiometals frequently considered to be alpha therapeutic candidates.


Asunto(s)
Quelantes , Complejos de Coordinación , Quelantes/química , Complejos de Coordinación/química , Iones , Plomo , Ligandos , Radiofármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
8.
Inorg Chem ; 60(13): 10030-10037, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34159785

RESUMEN

For the first time, synthesis of bifunctional [2.2.2]-cryptands (CRYPT) and demonstration of radiolabeling with lead(II) (Pb2+) isotopes are disclosed herein. The synthesis is convenient and high-yielding and gives access to three distinct bifunctional handles (azide (-N3), isothiocyanate (-NCS), and tetrazine (-Tz)) that can enable the construction of radioimmunoconjugates for targeted and pretargeted therapy. Proof-of-principle CRYPT radiolabeling was successful with lead-203 ([203Pb]Pb2+) and demonstrated complexation efficiency superior to that of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and efficiency comparable to that of the current industry standard TCMC (1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane). In vitro human serum stability assays demonstrated excellent [203Pb]Pb-CRYPT stability over 72 h (91.7 ± 0.56%; n = 3). [203Pb]Pb-CRYPT-radioimmunoconjugates were synthesized from the corresponding CRYPT-immunoconjugate or by conjugating [203Pb]Pb-Tz-CRYPT to transcyclooctene modified trastuzumab (TCO-trastuzumab) via the inverse electron-demand Diels-Alder (IEEDA) reaction. This investigation reveals the potential for CRYPT ligands to become new industry standards for therapeutic and diagnostic radiometals in radiopharmaceutical elaboration.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Medicina Nuclear , Radiofármacos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/sangre , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Humanos , Estructura Molecular , Radiofármacos/sangre , Radiofármacos/síntesis química
9.
Inorg Chem ; 59(17): 12156-12165, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32677829

RESUMEN

Recent clinical results have demonstrated remarkable treatment responses of late-stage cancer patients when treated with alpha-emitting radionuclides such as actinium-225 (225Ac). The resulting intense global effort to produce greater quantities of 225Ac has triggered a number of emerging technologies to produce this rare, yet important, radionuclide. Accelerator-based methods for increasing global 225Ac production capacity have focused on the high energy (>100 MeV) proton irradiation of thorium, despite the coproduction of the undesirable 227Ac byproduct at 0.1-0.3% of the 225Ac activity. We at TRIUMF have developed a process for the production of a 225Ra/225Ac generator from irradiated thorium that results in an 225Ac product with reduced 227Ac content. 225Ac was separated from irradiated thorium and coproduced radioactive spallation and fission products using a thorium peroxide precipitation method followed by cation exchange and extraction chromatography. Stable and radioactive tracer studies demonstrated the ability of this method to separate Ac from most other elements, providing a directly produced Ac product with measured 227Ac content of (0.15 ± 0.04)%. A second, indirectly produced Ac product with 227Ac content of <7.5 × 10-5% is obtained by repeating the final extraction chromatography step with the 225Ra-containing fraction. The 225Ra-derived 225Ac showed similar or improved quality compared to the initial, directly produced 225Ac product in terms of chemical purity and radiolabeling capability, the latter of which was comparable with other 225Ac sources reported in the literature.

10.
Sci Rep ; 13(1): 10623, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391445

RESUMEN

TRIUMF is one of the only laboratories in the world able to produce both lead-203 (203Pb, t1/2 = 51.9 h) and 212Pb (t1/2 = 10.6 h) onsite via its 13 and 500 MeV cyclotrons, respectively. Together, 203Pb and 212Pb form an element-equivalent theranostic pair that potentiate image-guided, personalized cancer treatment, using 203Pb as a single-photon emission computed tomography (SPECT) source, and 212Pb for targeted alpha therapy. In this study, improvements to 203Pb production were accomplished by manufacturing electroplated, silver-backed thallium (Tl) targets to improve target thermal stability, which allow for higher currents during irradiation. We implemented a novel, two-column purification method that employs selective Tl precipitation (203Pb only) alongside extraction and anion exchange chromatography to elute high specific activity and chemical purity 203/212Pb in a minimal volume of dilute acid, without the need for evaporation. Optimization of the purification method translated to improvements in radiolabeling yields and apparent molar activity of lead chelators TCMC (S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra(2-carbamoylmethyl)cyclododecane) and Crypt-OH, a derivative of a [2.2.2]-cryptand.


Asunto(s)
Medicina Nuclear , Plomo , Medicina de Precisión , Cintigrafía , Tomografía Computarizada de Emisión de Fotón Único
11.
EJNMMI Radiopharm Chem ; 7(1): 12, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666363

RESUMEN

BACKGROUND: Combining optical (fluorescence) imaging with nuclear imaging has the potential to offer a powerful tool in personal health care, where nuclear imaging offers in vivo functional whole-body visualization, and the fluorescence modality may be used for image-guided tumor resection. Varying chemical strategies have been exploited to fuse both modalities into one molecular entity. When radiometals are employed in nuclear imaging, a chelator is typically inserted into the molecule to facilitate radiolabeling; the availability of the chelator further expands the potential use of these platforms for targeted radionuclide therapy if a therapeutic radiometal is employed. Herein, a novel mixed modality scaffold which contains a tetrazine (Tz)--for biomolecule conjugation, fluorophore-for optical imaging, and chelator-for radiometal incorporation, in one construct is presented. The novel platform was characterized for its fluorescence properties, radiolabeled with single-photon emission computed tomography (SPECT) isotope indium-111 (111In3+) and therapeutic alpha emitter actinium-225 (225Ac3+). Both radiolabels were conjugated in vitro to trans-cyclooctene (TCO)-modified trastuzumab; biodistribution and immuno-SPECT imaging of the former conjugate was assessed. RESULTS: Key to the success of the platform synthesis was incorporation of a 4,4'-dicyano-BODIPY fluorophore. The route gives access to an advanced intermediate where final chelator-incorporated compounds can be easily accessed in one step prior to radiolabeling or biomolecule conjugation. The DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) conjugate was prepared, displayed good fluorescence properties, and was successfully radiolabeled with 111In & 225Ac in high radiochemical yield. Both complexes were then separately conjugated in vitro to TCO modified trastuzumab through an inverse electron demand Diels-Alder (IEDDA) reaction with the Tz. Pilot small animal in vivo immuno-SPECT imaging with [111In]In-DO3A-BODIPY-Tz-TCO-trastuzumab was also conducted and exhibited high tumor uptake (21.2 ± 5.6%ID/g 6 days post-injection) with low uptake in non-target tissues. CONCLUSIONS: The novel platform shows promise as a multi-modal probe for theranostic applications. In particular, access to an advanced synthetic intermediate where tailored chelators can be incorporated in the last step of synthesis expands the potential use of the scaffold to other radiometals. Future studies including validation of ex vivo fluorescence imaging and exploiting the pre-targeting approach available through the IEDDA reaction are warranted.

12.
Dalton Trans ; 50(33): 11579-11595, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34352061

RESUMEN

Amide-based chelators DTPAm, EGTAm and ampam were synthesized to investigate which chelator most ideally coordinates [nat/203Pb]Pb2+ ions for potential radiopharmaceutical applications. 1H NMR spectroscopy was used to study each metal-ligand complex in the solution state. The 1H NMR spectrum of [Pb(DTPAm)]2+ revealed minimal isomerization and fluxional behaviour compared to [Pb(EGTAm)]2+ and [Pb(ampam)]2+, both of which showed fewer spectral changes indicative of less static behaviour. The solid-state coordination properties of each complex were also examined from single crystal structures that were studied by X-ray diffraction (XRD). In the solid-state, octadentate DTPAm coordinated Pb2+ to form an eight-coordinate hemidirected complex; octadentate EGTAm coordinated Pb2+ forming a ten-coordinate holodirected complex with a bidentate NO3- ion also coordinated to the metal centre; decadentate ampam completely encapsulated the Pb2+ ion to form a ten-coordinate holodirected complex with a C2 axis of symmetry. Potentiometric titrations were carried out to assess the thermodynamic stability of each metal-ligand complex. The pM values obtained for [Pb(DTPAm)]2+, [Pb(EGTAm)]2+ and [Pb(ampam)]2+ were 9.7, 7.2 and 10.2, respectively. The affinity of each chelator for Pb2+ ions was tested by [203Pb]Pb2+ radiolabeling studies to evaluate their prospects as chelators for [203/212Pb]Pb2+-based radiopharmaceuticals. DTPAm radiolabeled [203Pb]Pb2+ ions achieving molar activities as high as 3.5 MBq µmol-1 within 15 minutes, at 25 °C, whereas EGTAm and ampam produced lower molar activities of 0.25 MBq µmol-1 within 30 minutes, at 37 °C. EGTAm and ampam were therefore deemed unsuitable for [203/212Pb]Pb2+-based radiopharmaceutical applications, while DTPAm warrants further studies.


Asunto(s)
Amidas/química , Quelantes/química , Complejos de Coordinación/química , Plomo/química , Radiofármacos/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Radioisótopos de Plomo/química , Ligandos , Conformación Molecular , Radiofármacos/síntesis química , Termodinámica
13.
EJNMMI Radiopharm Chem ; 6(1): 6, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33527221

RESUMEN

BACKGROUND: Lead-212 (212Pb, t1/2 = 10.6 h) and lead-203 (203Pb, t1/2 = 51.9 h) are an element-equivalent, or a matched theranostic radioisotope pair that show great potential for application in targeted radionuclide therapy (TRT) and single-photon emission computed tomography (SPECT), respectively. At TRIUMF we have produced both 203Pb and 212Pb using TRIUMF's TR13 (13 MeV) and 500 MeV cyclotrons, and subsequently purified and evaluated both radioisotopes using a series of pyridine-modified DOTA analogues in comparison to the commercially available chelates DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and TCMC (1,4,7,10-tetraaza-1,4,7,10-tetra(2-carbamoylmethyl)cyclododecane). RESULTS: Proton irradiation (12.8 MeV) of natural and enriched thallium-203 (203Tl) targets gave 203Pb saturation yields of 134 ± 25 and 483 ± 3 MBq/µA, respectively. Thorium-228 (228Th, t1/2 = 1.9 y), a by-product of 232Th proton spallation on TRIUMF's main 500 MeV beamline (beamline 1A, BL1A), was recovered to build a 228Th/212Pb generator with the ability to deliver up to 9-10 MBq of 212Pb daily. Both lead isotopes were purified via solid phase extraction chromatography (Pb resin), and isolated in an acetate form ([203/212Pb]Pb(OAc)2) suitable for direct radiolabeling of chelators and bioconjugates. A series of cyclen-based chelators (herein referred to as DOTA-1Py, -2Py, and -3Py) along with established chelates DOTA and TCMC were evaluated for their ability to complex both 203Pb and 212Pb. All chelates incorporated 212Pb/203Pb efficiently, with higher radiolabeling yields observed for the 212Pb-complexes. CONCLUSION: The production of 203Pb and 212Pb was established using TRIUMF 13 MeV and 500 MeV cyclotrons, respectively. Both production methods provided radiometals suitable for subsequent radiolabeling reactions using known and novel chelates. Furthermore, the novel chelate DOTA-3Py may be a good candidate for biomolecule conjugation and further theranostic 212Pb/203Pb studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA