Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 327(5): R473-R478, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241004

RESUMEN

Strenuous physical training increases total blood volume (BV) through expansion of plasma volume (PV) and red cell volume (RCV). In contrast, exogenous erythropoietin (EPO) treatment increases RCV but decreases PV, rendering BV stable or slightly decreased. This study aimed to determine the combined effects of strenuous training and EPO treatment on BV and markers of systemic and muscle iron homeostasis. In this longitudinal study, eight healthy nonanemic males were treated with EPO (50 IU/kg body mass, three times per week, sc) across 28 days of strenuous training (4 days/wk, exercise energy expenditures of 1,334 ± 24 kcal/day) while consuming a controlled, energy-balanced diet providing 39 ± 4 mg/day iron. Before (PRE) and after (POST) intervention, BV compartments were measured using carbon monoxide rebreathing, and markers of iron homeostasis were assessed in blood and skeletal muscle (vastus lateralis). Training + EPO increased (P < 0.01) RCV (13 ± 6%) and BV (5 ± 4%), whereas PV remained unchanged (P = 0.86). The expansion of RCV was accompanied by a large decrease in whole body iron stores, as indicated by decreased (P < 0.01) ferritin (-77 ± 10%) and hepcidin (-49 ± 23%) concentrations in plasma. Training + EPO decreased (P < 0.01) muscle protein abundance of ferritin (-25 ± 20%) and increased (P < 0.05) transferrin receptor (47 ± 56%). These novel findings illustrate that strenuous training combined with EPO results in both increased total oxygen-carrying capacity and hypervolemia in young healthy males. The decrease in plasma and muscle ferritin suggests that the marked upregulation of erythropoiesis alters systemic and tissue iron homeostasis, resulting in a decline in whole body and skeletal muscle iron stores.NEW & NOTEWORTHY Strenuous exercise training combined with erythropoietin (EPO) treatment increases blood volume, driven exclusively by red cell volume expansion. This hematological adaptation results in increased total oxygen-carrying capacity and hypervolemia. The marked upregulation of erythropoiesis with training + EPO reduces whole body iron stores and circulating hepcidin concentrations. The finding that the abundance of ferritin in muscle decreased after training + EPO suggests that muscle may release iron to support red blood cell production.


Asunto(s)
Volumen de Eritrocitos , Eritropoyetina , Homeostasis , Hierro , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hierro/metabolismo , Volumen de Eritrocitos/efectos de los fármacos , Adulto Joven , Adulto , Volumen Plasmático/efectos de los fármacos , Volumen Sanguíneo/efectos de los fármacos , Biomarcadores/sangre , Biomarcadores/metabolismo , Ejercicio Físico/fisiología , Hepcidinas/metabolismo , Eritropoyesis/efectos de los fármacos , Ferritinas/metabolismo , Ferritinas/sangre
2.
Physiol Rep ; 12(16): e70009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39174870

RESUMEN

The objective of this study was to examine the effect of consuming ketone monoester plus a high dose of carbohydrate from glucose (KE + CHO) on the change in erythropoietin (EPO) concentrations during load carriage exercise compared with carbohydrate (CHO) alone. Using a randomized, crossover design, 12 males consumed KE + CHO (573 mg KE/kg body mass, 110 g glucose) or CHO (110 g glucose) 30 min before 4 miles of self-paced treadmill exercise (KE + CHO:51 ± 13%, CHO: 52 ± 12% V̇O2peak) wearing a weighted vest (30% body mass; 25 ± 3 kg). Blood samples for analysis were obtained under resting fasted conditions before (Baseline) consuming the KE + CHO or CHO supplement and immediately after exercise (Post). ßHB increased (p < 0.05) from Baseline to Post in KE + CHO, with no change in CHO. Glucose and glycerol increased (p < 0.05) from Baseline to Post in CHO, with no effect of time in KE + CHO. Insulin and lactate increased (p < 0.05) from Baseline to Post independent of treatment. EPO increased (p < 0.05) from Baseline to Post in KE + CHO and CHO with no difference between treatments. Although KE + CHO altered ßHB, glucose, and glycerol concentrations, results from this study suggest that KE + CHO supplementation before load carriage exercise does not enhance immediate post-exercise increases in EPO compared with CHO alone.


Asunto(s)
Suplementos Dietéticos , Eritropoyetina , Ejercicio Físico , Glucosa , Humanos , Masculino , Eritropoyetina/administración & dosificación , Eritropoyetina/sangre , Ejercicio Físico/fisiología , Adulto , Glucosa/metabolismo , Glucosa/administración & dosificación , Glucemia/metabolismo , Estudios Cruzados , Cetonas/sangre , Cetonas/administración & dosificación , Adulto Joven , Carbohidratos de la Dieta/administración & dosificación , Ácido Láctico/sangre , Insulina/sangre
3.
Physiol Rep ; 12(10): e16038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757249

RESUMEN

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Asunto(s)
Eritropoyetina , Ejercicio Físico , Músculo Esquelético , Oxidación-Reducción , Masculino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Adulto , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Oxidación-Reducción/efectos de los fármacos , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Hematócrito , Metabolismo Energético/efectos de los fármacos , Adulto Joven , Metabolismo de los Lípidos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA