Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Remote Sens Environ ; 173: 274-281, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28148972

RESUMEN

Due to the availability of good and reasonably priced auxiliary data, the use of model-based regression-synthetic estimators for small area estimation is popular in operational settings. Examples are forest management inventories, where a linking model is used in combination with airborne laser scanning data to estimate stand-level forest parameters where no or too few observations are collected within the stand. This paper focuses on different approaches to estimating the variances of those estimates. We compared a variance estimator which is based on the estimation of superpopulation parameters with variance estimators which are based on predictions of finite population values. One of the latter variance estimators considered the spatial autocorrelation of the residuals whereas the other one did not. The estimators were applied using timber volume on stand level as the variable of interest and photogrammetric image matching data as auxiliary information. Norwegian National Forest Inventory (NFI) data were used for model calibration and independent data clustered within stands were used for validation. The empirical coverage proportion (ECP) of confidence intervals (CIs) of the variance estimators which are based on predictions of finite population values was considerably higher than the ECP of the CI of the variance estimator which is based on the estimation of superpopulation parameters. The ECP further increased when considering the spatial autocorrelation of the residuals. The study also explores the link between confidence intervals that are based on variance estimates as well as the well-known confidence and prediction intervals of regression models.

2.
Sci Total Environ ; 947: 174653, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002588

RESUMEN

Countries within the tropics face ongoing challenges in completing or updating their national forest inventories (NFIs), critical for estimating aboveground biomass (AGB) and for forest-related greenhouse gas (GHG) accounting. While previous studies have explored the integration of map information with local reference data to fill in data gaps, limited attention has been given to the specific challenges presented by the clustered plot designs frequently employed by NFIs when combined with remote sensing-based biomass map units. This research addresses these complexities by conducting four country case-studies, encompassing a variety of NFI characteristics within a range of AGB densities. Examining four country case-studies (Peru, Guyana, Tanzania, Mozambique), we assess the potential of European Space Agency's Climate Change Initiative (CCI) global biomass maps to increase precision in (sub)national AGB estimates. We compare a baseline approach using NFI field-based data with a model-assisted scenario incorporating a locally calibrated CCI biomass map as auxiliary information. The original CCI biomass maps systematically underestimate AGB in three of the four countries at both the country and stratum level, with particularly weak agreement at finer map resolution. However, after calibration with country-specific NFI data, stratum and country-level AGB estimates from the model-assisted scenario align well with those obtained solely from field-based data and official country reports. Introducing maps as a source of auxiliary information fairly increased the precision of stratum and country-wise AGB estimates, offering greater confidence in estimating AGB for GHG reporting purposes. Considering the challenges tropical countries face with implementing their NFIs, it is sensible to explore the potential benefits of biomass maps for climate change reporting mechanisms across biomes. While country-specific NFI design assumptions guided our model-assisted inference strategies, this study also uncovers transferable insights from the application of global biomass maps with NFI data, providing valuable lessons for climate research and policy communities.


Asunto(s)
Biomasa , Cambio Climático , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Bosques , Tanzanía , Clima Tropical , Mozambique , Guyana , Gases de Efecto Invernadero/análisis
3.
Sci Adv ; 7(27)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34215577

RESUMEN

Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 5.5 PgC year-1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year-1 of gross emissions from disturbances and adding substantially (0.23 to 0.88 PgC year-1) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sink.

4.
Carbon Balance Manag ; 12(1): 18, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29046991

RESUMEN

BACKGROUND: Carbon accounting in forests remains a large area of uncertainty in the global carbon cycle. Forest aboveground biomass is therefore an attribute of great interest for the forest management community, but the accuracy of aboveground biomass maps depends on the accuracy of the underlying field estimates used to calibrate models. These field estimates depend on the application of allometric models, which often have unknown and unreported uncertainties outside of the size class or environment in which they were developed. RESULTS: Here, we test three popular allometric approaches to field biomass estimation, and explore the implications of allometric model selection for county-level biomass mapping in Sonoma County, California. We test three allometric models: Jenkins et al. (For Sci 49(1): 12-35, 2003), Chojnacky et al. (Forestry 87(1): 129-151, 2014) and the US Forest Service's Component Ratio Method (CRM). We found that Jenkins and Chojnacky models perform comparably, but that at both a field plot level and a total county level there was a ~ 20% difference between these estimates and the CRM estimates. Further, we show that discrepancies are greater in high biomass areas with high canopy covers and relatively moderate heights (25-45 m). The CRM models, although on average ~ 20% lower than Jenkins and Chojnacky, produce higher estimates in the tallest forests samples (> 60 m), while Jenkins generally produces higher estimates of biomass in forests < 50 m tall. Discrepancies do not continually increase with increasing forest height, suggesting that inclusion of height in allometric models is not primarily driving discrepancies. Models developed using all three allometric models underestimate high biomass and overestimate low biomass, as expected with random forest biomass modeling. However, these deviations were generally larger using the Jenkins and Chojnacky allometries, suggesting that the CRM approach may be more appropriate for biomass mapping with lidar. CONCLUSIONS: These results confirm that allometric model selection considerably impacts biomass maps and estimates, and that allometric model errors remain poorly understood. Our findings that allometric model discrepancies are not explained by lidar heights suggests that allometric model form does not drive these discrepancies. A better understanding of the sources of allometric model errors, particularly in high biomass systems, is essential for improved forest biomass mapping.

5.
Ann Appl Stat ; 3(3): 1052-1079, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20352037

RESUMEN

Spatially explicit data layers of tree species assemblages, referred to as forest types or forest type groups, are a key component in large-scale assessments of forest sustainability, biodiversity, timber biomass, carbon sinks and forest health monitoring. This paper explores the utility of coupling georeferenced national forest inventory (NFI) data with readily available and spatially complete environmental predictor variables through spatially-varying multinomial logistic regression models to predict forest type groups across large forested landscapes. These models exploit underlying spatial associations within the NFI plot array and the spatially-varying impact of predictor variables to improve the accuracy of forest type group predictions. The richness of these models incurs onerous computational burdens and we discuss dimension reducing spatial processes that retain the richness in modeling. We illustrate using NFI data from Michigan, USA, where we provide a comprehensive analysis of this large study area and demonstrate improved prediction with associated measures of uncertainty.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA