Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261399

RESUMEN

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Asunto(s)
Siadenovirus , Transporte Activo de Núcleo Celular , Transporte de Proteínas , Señales de Localización Nuclear/genética , Carioferinas
2.
J Infect Dis ; 227(3): 391-401, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648018

RESUMEN

The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.


Asunto(s)
Herpesvirus Humano 3 , Antígenos de Histocompatibilidad Clase I , Animales , Herpesvirus Humano 3/genética , Ligandos , Antígenos de Histocompatibilidad Menor , Complejo Mayor de Histocompatibilidad , Mamíferos
3.
PLoS Pathog ; 16(7): e1008473, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32649716

RESUMEN

Herpesviruses are known to encode a number of inhibitors of host cell death, including RIP Homotypic Interaction Motif (RHIM)-containing proteins. Varicella zoster virus (VZV) is a member of the alphaherpesvirus subfamily and is responsible for causing chickenpox and shingles. We have identified a novel viral RHIM in the VZV capsid triplex protein, open reading frame (ORF) 20, that acts as a host cell death inhibitor. Like the human cellular RHIMs in RIPK1 and RIPK3 that stabilise the necrosome in TNF-induced necroptosis, and the viral RHIM in M45 from murine cytomegalovirus that inhibits cell death, the ORF20 RHIM is capable of forming fibrillar functional amyloid complexes. Notably, the ORF20 RHIM forms hybrid amyloid complexes with human ZBP1, a cytoplasmic sensor of viral nucleic acid. Although VZV can inhibit TNF-induced necroptosis, the ORF20 RHIM does not appear to be responsible for this inhibition. In contrast, the ZBP1 pathway is identified as important for VZV infection. Mutation of the ORF20 RHIM renders the virus incapable of efficient spread in ZBP1-expressing HT-29 cells, an effect which can be reversed by the inhibition of caspases. Therefore we conclude that the VZV ORF20 RHIM is important for preventing ZBP1-driven apoptosis during VZV infection, and propose that it mediates this effect by sequestering ZBP1 into decoy amyloid assemblies.


Asunto(s)
Muerte Celular/fisiología , Herpesvirus Humano 3/metabolismo , Proteínas de Unión al ARN/metabolismo , Infección por el Virus de la Varicela-Zóster/metabolismo , Proteínas Virales/metabolismo , Animales , Humanos , Ratones
4.
J Virol ; 93(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30487283

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. While HCMV infection is generally asymptomatic in the immunocompetent, it can have devastating consequences in those with compromised or underdeveloped immune systems, including transplant recipients and neonates. Galectins are a widely expressed protein family that have been demonstrated to modulate both antiviral immunity and regulate direct host-virus interactions. The potential for galectins to directly modulate HCMV infection has not previously been studied, and our results reveal that galectin-9 (Gal-9) can potently inhibit HCMV infection. Gal-9-mediated inhibition of HCMV was dependent upon its carbohydrate recognition domains and thus dependent on glycan interactions. Temperature shift studies revealed that Gal-9 specific inhibition was mediated primarily at the level of virus-cell fusion and not binding. Additionally, we found that during reactivation of HCMV in hematopoietic stem cell transplant (HSCT) patients soluble Gal-9 is upregulated. This study provides the first evidence for Gal-9 functioning as a potent antiviral defense effector molecule against HCMV infection and identifies it as a potential clinical candidate to restrict HCMV infections.IMPORTANCE Human cytomegalovirus (HCMV) continues to cause serious and often life-threatening disease in those with impaired or underdeveloped immune systems. This virus is able to infect and replicate in a wide range of human cell types, which enables the virus to spread to other individuals in a number of settings. Current antiviral drugs are associated with a significant toxicity profile, and there is no vaccine; these factors highlight a need to identify additional targets for the development of anti-HCMV therapies. We demonstrate for the first time that secretion of a member of the galectin family of proteins, galectin-9 (Gal-9), is upregulated during natural HCMV-reactivated infection and that this soluble cellular protein possesses a potent capacity to block HCMV infection by inhibiting virus entry into the host cell. Our findings support the possibility of harnessing the antiviral properties of Gal-9 to prevent HCMV infection and disease.


Asunto(s)
Infecciones por Citomegalovirus/prevención & control , Citomegalovirus/patogenicidad , Galectinas/metabolismo , Activación Viral , Internalización del Virus , Replicación Viral , Adulto , Antivirales/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Trasplante de Células Madre Hematopoyéticas , Humanos , Estudios Prospectivos , Receptores de Trasplantes
5.
J Gen Virol ; 100(3): 333-349, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30648945

RESUMEN

Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen-host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.


Asunto(s)
Galectinas/inmunología , Virosis/inmunología , Animales , Galectinas/genética , Interacciones Huésped-Patógeno , Humanos , Virosis/genética , Virosis/virología , Fenómenos Fisiológicos de los Virus , Virus/genética
6.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29593042

RESUMEN

There are many facets of varicella-zoster virus (VZV) pathogenesis that are not fully understood, such as the mechanisms involved in the establishment of lifelong latency, reactivation, and development of serious conditions like postherpetic neuralgia (PHN). Virus-encoded modulation of apoptosis has been suggested to play an important role in these processes. VZV open reading frame 63 (ORF63) has been shown to modulate apoptosis in a cell-type-specific manner, but the impact of ORF63 on cell death pathways has not been examined in isolation in the context of human cells. We sought to elucidate the effect of VZV ORF63 on apoptosis induction in human neuron and keratinocyte cell lines. VZV ORF63 was shown to protect differentiated SH-SY5Y neuronal cells against staurosporine-induced apoptosis. In addition, VZV infection did not induce high levels of apoptosis in the HaCaT human keratinocyte line, highlighting a delay in apoptosis induction. VZV ORF63 was shown to protect HaCaT cells against both staurosporine- and Fas ligand-induced apoptosis. Confocal microscopy was utilized to examine VZV ORF63 localization during apoptosis induction. In VZV infection and ORF63 expression alone, VZV ORF63 became more cytoplasmic, with aggregate formation during apoptosis induction. Taken together, this suggests that VZV ORF63 protects both differentiated SH-SY5Y cells and HaCaT cells from apoptosis induction and may mediate this effect through its localization change during apoptosis. VZV ORF63 is a prominent VZV gene product in both productive and latent infection and thus may play a critical role in VZV pathogenesis by aiding neuron and keratinocyte survival.IMPORTANCE VZV, a human-specific alphaherpesvirus, causes chicken pox during primary infection and establishes lifelong latency in the dorsal root ganglia (DRG). Reactivation of VZV causes shingles, which is often followed by a prolonged pain syndrome called postherpetic neuralgia. It has been suggested that the ability of the virus to modulate cell death pathways is linked to its ability to establish latency and reactivate. The significance of our research lies in investigating the ability of ORF63, a VZV gene product, to inhibit apoptosis in novel cell types crucial for VZV pathogenesis. This will allow an increased understanding of critical enigmatic components of VZV pathogenesis.


Asunto(s)
Apoptosis/fisiología , Herpesvirus Humano 3/genética , Proteínas Inmediatas-Precoces/metabolismo , Queratinocitos/metabolismo , Neuronas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Ganglios Espinales/virología , Herpes Zóster/patología , Herpes Zóster/virología , Herpesvirus Humano 3/patogenicidad , Humanos , Proteínas Inmediatas-Precoces/genética , Queratinocitos/citología , Neuronas/citología , Estaurosporina/farmacología , Proteínas del Envoltorio Viral/genética , Latencia del Virus/genética
7.
J Gen Virol ; 98(7): 1795-1805, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28745271

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that causes life-threatening disease in immunocompromised and immunonaïve individuals. Type I interferons (IFNs) are crucial molecules in the innate immune response to HCMV and are also known to upregulate several components of the interchromosomal multiprotein aggregates collectively referred to as nuclear domain 10 (ND10). In the context of herpesvirus infection, ND10 components are known to restrict gene expression. This raises the question as to whether key ND10 components (PML, Sp100 and hDaxx) act as anti-viral IFN-stimulated genes (ISGs) during HCMV infection. In this study, analysis of ND10 component transcription during HCMV infection demonstrated that PML and Sp100 were significantly upregulated whilst hDaxx expression remained unchanged. In cells engineered to block the production of, or response to, type I IFNs, upregulation of PML and Sp100 was not detected during HCMV infection. Furthermore, pre-treatment with an IFN-ß neutralizing antibody inhibited upregulation of PML and Sp100 during both infection and treatment with HCMV-infected cell supernatant. The significance of ND10 components functioning as anti-viral ISGs during HCMV infection was determined through knockdown of PML, Sp100 and hDaxx. ND10 knockdown cells were significantly more permissive to HCMV infection, as previously described but, in contrast to control cells, could support HCMV plaque formation following IFN-ß pre-treatment. This ability of HCMV to overcome the potently anti-viral effects of IFN-ß in ND10 expression deficient cells provides evidence that ND10 component upregulation is a key mediator of the anti-viral activity of IFN-ß.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Antígenos Nucleares/biosíntesis , Autoantígenos/biosíntesis , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Interferón beta/inmunología , Proteínas Nucleares/biosíntesis , Proteína de la Leucemia Promielocítica/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Antígenos Nucleares/genética , Antígenos Nucleares/inmunología , Autoantígenos/genética , Autoantígenos/inmunología , Línea Celular , Proteínas Co-Represoras , Infecciones por Citomegalovirus/virología , Regulación Viral de la Expresión Génica/inmunología , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Interferón beta/genética , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/inmunología , Interferencia de ARN , ARN Interferente Pequeño/genética , Regulación hacia Arriba/inmunología
8.
J Virol ; 90(8): 3819-3827, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26792743

RESUMEN

UNLABELLED: The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14(+)monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. IMPORTANCE: Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease, particularly in the congenital setting and in solid-organ and hematopoietic stem cell transplant patients. A prominent feature of HCMV is the wide range of viral gene products that it encodes which function to modulate host defenses. One of these is cmvIL-10, which is a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). In this study, we report that, in addition to exerting a direct biological impact, cmvIL-10 upregulates the expression of hIL-10 by primary blood-derived monocytes and that it does so by modulating existing cellular pathways. This capacity of cmvIL-10 to upregulate hIL-10 represents a mechanism by which HCMV may amplify its immunomodulatory impact during infection.


Asunto(s)
Citomegalovirus/genética , Regulación Viral de la Expresión Génica , Interleucina-10/genética , Monocitos/virología , Proteínas Virales/fisiología , Células Cultivadas , Citomegalovirus/inmunología , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Interleucina-10/metabolismo , Receptores de Lipopolisacáridos , Monocitos/inmunología , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/metabolismo , Regulación hacia Arriba , Proteínas Virales/genética
9.
J Virol ; 89(15): 7932-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995251

RESUMEN

UNLABELLED: Natural killer (NK) cell-deficient patients are particularly susceptible to severe infection with herpesviruses, especially varicella-zoster virus (VZV) and herpes simplex virus 1 (HSV-1). The critical role that NK cells play in controlling these infections denotes an intricate struggle for dominance between virus and NK cell antiviral immunity; however, research in this area has remained surprisingly limited. Our study addressed this absence of knowledge and found that infection with VZV was not associated with enhanced NK cell activation, suggesting that the virus uses specific mechanisms to limit NK cell activity. Analysis of viral regulation of ligands for NKG2D, a potent activating receptor ubiquitously expressed on NK cells, revealed that VZV differentially modulates expression of the NKG2D ligands MICA, ULBP2, and ULBP3 by upregulating MICA expression while reducing ULBP2 and ULBP3 expression on the surface of infected cells. Despite being closely related to VZV, infection with HSV-1 produced a remarkably different effect on NKG2D ligand expression. A significant decrease in MICA, ULBP2, and ULBP3 was observed with HSV-1 infection at a total cellular protein level, as well as on the cell surface. We also demonstrate that HSV-1 differentially regulates expression of an additional NKG2D ligand, ULBP1, by reducing cell surface expression while total protein levels are unchanged. Our findings illustrate both a striking point of difference between two closely related alphaherpesviruses, as well as suggest a powerful capacity for VZV and HSV-1 to evade antiviral NK cell activity through novel modulation of NKG2D ligand expression. IMPORTANCE: Patients with deficiencies in NK cell function experience an extreme susceptibility to infection with herpesviruses, in particular, VZV and HSV-1. Despite this striking correlation, research into understanding how these two alphaherpesviruses interact with NK cells is surprisingly limited. Through examination of viral regulation of ligands to the activating NK cell receptor NKG2D, we reveal patterns of modulation by VZV, which were unexpectedly varied in response to regulation by HSV-1 infection. Our study begins to unravel the undoubtedly complex interactions that occur between NK cells and alphaherpesvirus infection by providing novel insights into how VZV and HSV-1 manipulate NKG2D ligand expression to modulate NK cell activity, while also illuminating a distinct variation between two closely related alphaherpesviruses.


Asunto(s)
Herpes Simple/genética , Herpes Zóster/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 3/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Línea Celular , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Herpes Simple/inmunología , Herpes Simple/virología , Herpes Zóster/inmunología , Herpes Zóster/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Péptidos y Proteínas de Señalización Intercelular/inmunología , Células Asesinas Naturales/inmunología , Ligandos , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología
10.
J Virol ; 89(2): 1479-83, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392213

RESUMEN

The effect of abrogating the interferon (IFN) response on human cytomegalovirus (HCMV) replication was investigated using primary human cells engineered to block either the production of or the response to type I IFNs. In IFN-deficient cells, HCMV produced larger plaques and spread and replicated more rapidly than in parental cells. These cells demonstrate the vital role of IFNs in controlling HCMV replication and provide useful tools to investigate the IFN response to HCMV.


Asunto(s)
Citomegalovirus/inmunología , Citomegalovirus/fisiología , Interferón Tipo I/inmunología , Replicación Viral , Células Cultivadas , Humanos , Interferón Tipo I/deficiencia , Ensayo de Placa Viral
11.
PLoS Pathog ; 10(5): e1004058, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24787765

RESUMEN

NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αß and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.


Asunto(s)
Citomegalovirus , Antígenos de Histocompatibilidad Clase I/metabolismo , Evasión Inmune , Células Asesinas Naturales/inmunología , Lisosomas/metabolismo , Proteolisis , Proteínas Virales/fisiología , Adulto , Proteínas Bacterianas/metabolismo , Células Cultivadas , Citomegalovirus/inmunología , Citomegalovirus/patogenicidad , Inhibidores Enzimáticos/farmacología , Humanos , Evasión Inmune/efectos de los fármacos , Células Asesinas Naturales/efectos de los fármacos , Leupeptinas/farmacología , Proteínas Luminiscentes/metabolismo , Lisosomas/efectos de los fármacos , Macrólidos/farmacología , Subfamilia K de Receptores Similares a Lectina de Células NK/fisiología , Proteolisis/efectos de los fármacos , Proteínas Recombinantes/metabolismo
12.
J Virol ; 88(18): 10990-4, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008927

RESUMEN

Regulation of the lectin galectin 9 (Gal-9) was investigated for the first time during human cytomegalovirus (HCMV) infection. Gal-9 transcription was significantly upregulated in transplant recipients with reactivated HCMV in vivo. In vitro, Gal-9 was potently upregulated by HCMV independently of viral gene expression, with interferon beta (IFN-ß) identified as the mediator of this effect. This study defines an immunoregulatory protein potently increased by HCMV infection and a novel mechanism to control Gal-9 through IFN-ß induction.


Asunto(s)
Infecciones por Citomegalovirus/genética , Citomegalovirus/fisiología , Galectinas/genética , Interferón beta/metabolismo , Regulación hacia Arriba , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Galectinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Interferón beta/genética
13.
J Virol ; 87(18): 10273-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864618

RESUMEN

Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14(+) monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1ß, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4(+) T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4(+) T cell responses at sites of infection.


Asunto(s)
Citomegalovirus/inmunología , Interacciones Huésped-Patógeno , Evasión Inmune , Interleucina-10/inmunología , Monocitos/inmunología , Monocitos/virología , Factores de Virulencia/inmunología , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Citomegalovirus/fisiología , Hemo-Oxigenasa 1/análisis , Antígenos de Histocompatibilidad Clase II/análisis , Humanos , Interleucina-10/metabolismo , Receptores de Lipopolisacáridos/análisis , Monocitos/química , Receptores de Superficie Celular/análisis , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo
14.
J Immunol ; 188(6): 2794-804, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22345649

RESUMEN

Human CMV (HCMV)-encoded NK cell-evasion functions include an MHC class I homolog (UL18) with high affinity for the leukocyte inhibitory receptor-1 (CD85j, ILT2, or LILRB1) and a signal peptide (SP(UL40)) that acts by upregulating cell surface expression of HLA-E. Detailed characterization of SP(UL40) revealed that the N-terminal 14 aa residues bestowed TAP-independent upregulation of HLA-E, whereas C region sequences delayed processing of SP(UL40) by a signal peptide peptidase-type intramembrane protease. Most significantly, the consensus HLA-E-binding epitope within SP(UL40) was shown to promote cell surface expression of both HLA-E and gpUL18. UL40 was found to possess two transcription start sites, with utilization of the downstream site resulting in translation being initiated within the HLA-E-binding epitope (P2). Remarkably, this truncated SP(UL40) was functional and retained the capacity to upregulate gpUL18 but not HLA-E. Thus, our findings identify an elegant mechanism by which an HCMV signal peptide differentially regulates two distinct NK cell-evasion pathways. Moreover, we describe a natural SP(UL40) mutant that provides a clear example of an HCMV clinical virus with a defect in an NK cell-evasion function and exemplifies issues that confront the virus when adapting to immunogenetic diversity in the host.


Asunto(s)
Proteínas de la Cápside/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Evasión Inmune/inmunología , Células Asesinas Naturales/inmunología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Northern Blotting , Western Blotting , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Membrana Celular/inmunología , Membrana Celular/metabolismo , Separación Celular , Citomegalovirus/genética , Citomegalovirus/inmunología , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/genética , Proteínas Virales/inmunología , Antígenos HLA-E
15.
Proc Natl Acad Sci U S A ; 108(14): 5736-41, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21402922

RESUMEN

Hepatitis C is a common infection with significant morbidity and mortality, and only a minority of patients successfully clear the infection. Identification of factors that influence disease progression in HCV infection is difficult owing to the lack of well-defined patient cohorts. However, recent evidence supports a role for the innate immune system in virus clearance. In this study, we investigated innate immune genes for their contribution to disease progression in a unique cohort of well-controlled HCV-infected patients. The Irish cohort of HCV patients is uniquely homogenous; patients were infected with a single genotype of HCV from contaminated anti-D Ig. We genotyped 543 infected patients, including 247 patients who spontaneously resolved infection, for natural killer (NK) cell-associated killer cell Ig-like receptors (KIR) genes and the recently reported IL28B (IFNλ3) SNP. The NK cell gene KIR2DS3 was significantly increased in patients with chronic infection [odds ratio (OR) 1.90, 95% confidence interval (CI) 1.25-2.90, P < 0.002]. The IL28B "T" allele was also significantly increased in chronically infected patients (OR 7.38, 95% CI 4.93-11.07, P < 10(-8)). The presence of both markers synergized to significantly increase the risk of chronic infection over either factor alone (OR 20.11, 95% CI 9.05-44.68, P < 10(-7)). In functional experiments, we found that IL28A significantly inhibited IFN-γ production by NK cells. Thus, we demonstrate a functional link between NK cells and type 3 IFN. Our findings may contribute to the development of a prognostic test for HCV and identify therapeutic strategies for the clinical management of HCV-infected patients.


Asunto(s)
Hepacivirus/inmunología , Hepatitis C/inmunología , Inmunidad Innata/genética , Interleucinas/metabolismo , Células Asesinas Naturales/inmunología , Receptores KIR/metabolismo , Genotipo , Hepatitis C/genética , Humanos , Irlanda , Oportunidad Relativa , Polimorfismo de Nucleótido Simple/genética , Receptores KIR/genética , Factores de Riesgo
16.
J Virol Methods ; 326: 114907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432358

RESUMEN

Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.


Asunto(s)
Infecciones por Adenoviridae , Proteínas del Núcleo Viral , Animales , Proteínas del Núcleo Viral/genética , Adenoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas/metabolismo , Mamíferos/metabolismo
17.
iScience ; 27(2): 108801, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303725

RESUMEN

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.

18.
Front Immunol ; 14: 1107497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845106

RESUMEN

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion: This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Clase I , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidad Menor , Receptores de Antígenos de Linfocitos T/metabolismo
19.
J Immunol ; 184(10): 5827-34, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20410491

RESUMEN

TNF-like protein 1A (TL1A), a TNF superfamily cytokine that binds to death receptor 3 (DR3), is highly expressed in macrophage foam cell-rich regions of atherosclerotic plaques, although its role in foam cell formation has yet to be elucidated. We investigated whether TL1A can directly stimulate macrophage foam cell formation in both THP-1 and primary human monocyte-derived macrophages with the underlying mechanisms involved. We demonstrated that TL1A promotes foam cell formation in human macrophages in vitro by increasing both acetylated and oxidized low-density lipoprotein uptake, by enhancing intracellular total and esterified cholesterol levels and reducing cholesterol efflux. This imbalance in cholesterol homeostasis is orchestrated by TL1A-mediated changes in the mRNA and protein expression of several genes implicated in the uptake and efflux of cholesterol, such as scavenger receptor A and ATP-binding cassette transporter A1. Furthermore, through the use of virally delivered DR3 short-hairpin RNA and bone marrow-derived macrophages from DR3 knockout mice, we demonstrate that DR3 can regulate foam cell formation and contributes significantly to the action of TL1A in this process in vitro. We show, for the first time, a novel proatherogenic role for both TL1A and DR3 that implicates this pathway as a target for the therapeutic intervention of atherosclerosis.


Asunto(s)
Diferenciación Celular/inmunología , Células Espumosas/citología , Células Espumosas/inmunología , Miembro 25 de Receptores de Factores de Necrosis Tumoral/fisiología , Transducción de Señal/inmunología , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/fisiología , Animales , Aterosclerosis/inmunología , Aterosclerosis/patología , Transporte Biológico/inmunología , Línea Celular Tumoral , Células Cultivadas , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Femenino , Células Espumosas/patología , Humanos , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , Ratones Noqueados , Miembro 25 de Receptores de Factores de Necrosis Tumoral/deficiencia , Regulación hacia Arriba/inmunología
20.
Viruses ; 14(8)2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-36016389

RESUMEN

While adenoviruses cause infections in a wide range of vertebrates, members of the genus Atadenovirus, Siadenovirus, and Aviadenovirus predominantly infect avian hosts. Several recent studies on avian adenoviruses have encouraged us to re-visit previously proposed adenovirus evolutionary concepts. Complete genomes and partial DNA polymerase sequences of avian adenoviruses were extracted from NCBI and analysed using various software. Genomic analyses and constructed phylogenetic trees identified the atadenovirus origin from an Australian native passerine bird in contrast to the previously established reptilian origin. In addition, we demonstrated that the theories on higher AT content in atadenoviruses are no longer accurate and cannot be considered as a species demarcation criterion for the genus Atadenovirus. Phylogenetic reconstruction further emphasised the need to reconsider siadenovirus origin, and we recommend extended studies on avian adenoviruses in wild birds to provide finer evolutionary resolution.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Atadenovirus , Aviadenovirus , Siadenovirus , Adenoviridae/genética , Infecciones por Adenoviridae/veterinaria , Animales , Australia , Aviadenovirus/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA