Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 386(10): 911-922, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35263517

RESUMEN

BACKGROUND: Two thirds of children with tuberculosis have nonsevere disease, which may be treatable with a shorter regimen than the current 6-month regimen. METHODS: We conducted an open-label, treatment-shortening, noninferiority trial involving children with nonsevere, symptomatic, presumably drug-susceptible, smear-negative tuberculosis in Uganda, Zambia, South Africa, and India. Children younger than 16 years of age were randomly assigned to 4 months (16 weeks) or 6 months (24 weeks) of standard first-line antituberculosis treatment with pediatric fixed-dose combinations as recommended by the World Health Organization. The primary efficacy outcome was unfavorable status (composite of treatment failure [extension, change, or restart of treatment or tuberculosis recurrence], loss to follow-up during treatment, or death) by 72 weeks, with the exclusion of participants who did not complete 4 months of treatment (modified intention-to-treat population). A noninferiority margin of 6 percentage points was used. The primary safety outcome was an adverse event of grade 3 or higher during treatment and up to 30 days after treatment. RESULTS: From July 2016 through July 2018, a total of 1204 children underwent randomization (602 in each group). The median age of the participants was 3.5 years (range, 2 months to 15 years), 52% were male, 11% had human immunodeficiency virus infection, and 14% had bacteriologically confirmed tuberculosis. Retention by 72 weeks was 95%, and adherence to the assigned treatment was 94%. A total of 16 participants (3%) in the 4-month group had a primary-outcome event, as compared with 18 (3%) in the 6-month group (adjusted difference, -0.4 percentage points; 95% confidence interval, -2.2 to 1.5). The noninferiority of 4 months of treatment was consistent across the intention-to-treat, per-protocol, and key secondary analyses, including when the analysis was restricted to the 958 participants (80%) independently adjudicated to have tuberculosis at baseline. A total of 95 participants (8%) had an adverse event of grade 3 or higher, including 15 adverse drug reactions (11 hepatic events, all but 2 of which occurred within the first 8 weeks, when the treatments were the same in the two groups). CONCLUSIONS: Four months of antituberculosis treatment was noninferior to 6 months of treatment in children with drug-susceptible, nonsevere, smear-negative tuberculosis. (Funded by the U.K. Medical Research Council and others; SHINE ISRCTN number, ISRCTN63579542.).


Asunto(s)
Antituberculosos/administración & dosificación , Tuberculosis/tratamiento farmacológico , Adolescente , África , Niño , Preescolar , Esquema de Medicación , Quimioterapia Combinada , Femenino , Humanos , India , Lactante , Análisis de Intención de Tratar , Isoniazida/administración & dosificación , Masculino , Gravedad del Paciente , Pirazinamida/administración & dosificación , Rifampin/administración & dosificación , Resultado del Tratamiento
2.
Clin Infect Dis ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592950

RESUMEN

BACKGROUND: Children living with HIV(CLWH) are at high risk of tuberculosis(TB) and face poor outcomes, despite antiretroviral treatment(ART). We evaluated outcomes in CLWH and HIV-uninfected children treated for non-severe TB in the SHINE trial. METHODS: SHINE was a randomized trial that enrolled children aged <16 years with smear-negative, non-severe TB who were randomized to receive 4 vs 6 months of TB treatment and followed for 72 weeks. We assessed TB relapse/recurrence, mortality, hospitalizations, grade ≥3 adverse events by HIV status, and HIV virological suppression in CLWH. RESULTS: Of 1204 enrolled, 127(11%) were CLWH, of similar age (median(IQR) 3.6(1.2, 10.3) vs. 3.5(1.5, 6.9)years, p= 0.07), but more underweight (WAZ; -2.3(-3.3, -0.8) vs -1.0(-1.8, -0.2), p<0.01) and anemic (hemoglobin 9.5(8.7, 10.9) vs 11.5(10.4, 12.3)g/dl, p<0.01) compared to HIV-uninfected children. 68(54%) CLWH were ART-naïve; baseline median CD4 count 719(241-1134) cells/mm3, CD4% 16(10-26)%). CLWH were more likely to be hospitalized (aOR=2.4(1.3-4.6)) and die (aHR(95%CI) 2.6(1.2,5.8)). HIV status, age <3 years (aHR 6.3(1.5,27.3)), malnutrition (aHR 6.2(2.4,15.9)) and hemoglobin <7g/dl(aHR 3.8(1.3,11.5) independently predicted mortality. Among children with available VL, 45% and 61% CLWH had VL<1000copies/ml at weeks 24 and 48, respectively. There was no difference in the effect of randomized treatment duration (4 vs 6 months) on TB treatment outcomes by HIV status (p for interaction=0.42). CONCLUSIONS: We found no evidence of a difference in TB outcomes between 4 and 6 months of treatment for CLWH treated for non-severe TB. Irrespective of TB treatment duration, CLWH had higher rates of mortality and hospitalization than HIV-uninfected counterparts.


We compared outcomes between children with and without HIV treated for non-severe TB. Regardless of treatment duration (4 or 6 months), children with HIV had similar TB outcomes but had higher mortality and hospitalization rates than their HIV-uninfected counterparts.

3.
J Antimicrob Chemother ; 79(2): 280-286, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101948

RESUMEN

BACKGROUND: Tuberculous meningitis (TBM) is the most lethal form of TB. To study the disease, drug concentrations in samples obtained from the spinal CSF are usually used to reflect brain concentrations. Emerging data suggest that transport of substances across capillaries in the brain (ventricular CSF) and spinal cord may differ. METHODS: We examined paired, time-linked samples of ventricular CSF (VCSF) and lumbar CSF (LCSF) of 28 patients with TBM and analysed these for rifampicin and total protein concentrations. Clinically indicated samples from procedures to determine the level of CSF block were collected from children being treated for TBM and hydrocephalus. Total protein concentrations were determined using the bicinchoninic acid (BCA) or turbidimetry assay, and rifampicin concentrations were determined using a validated LC coupled with tandem MS method. A paired Wilcoxon signed-rank test was used to determine significance. RESULTS: TBM was confirmed in 19 cases (68%) using TB culture or GeneXpert Mtb/Rifampicin assay. All other cases were classified as probable. The median total protein concentration in LCSF was 6.0 g/L and in VCSF was 1.3 g/L. The median rifampicin concentration in LCSF was 299 ng/mL and 133 ng/mL in VCSF. The median ratio of LCSF/VSCF for protein was 4.23 and 1.57 for rifampicin. CONCLUSIONS: Total protein and rifampicin concentrations differed significantly between the two compartments, both being higher in LCSF than in VCSF samples (P < 0.0001 for total protein and P = 0.0046 for rifampicin). Further studies are required to explore the causative reasons for the observed differences.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Niño , Humanos , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Meníngea/líquido cefalorraquídeo , Rifampin/uso terapéutico , Líquido Cefalorraquídeo
4.
Clin Infect Dis ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982585

RESUMEN

BACKGROUND: Critical drug-drug interactions (DDI) and hepatotoxicity complicate concurrent use of rifampicin and protease inhibitors. We investigated whether dose escalation of atazanavir/ritonavir could safely overcome the DDI with rifampicin. METHODS: DERIVE (NCT04121195, EDCTP) was a dose-escalation trial in people with HIV on atazanavir/ritonavir-based ART in Uganda. Four intensive pharmacokinetic (PK) visits were performed: PK1 300/100 mg OD (baseline); PK2 300/100 mg OD with rifampicin 600 mg; PK3 300/100 mg BID with rifampicin 600 mg OD; PK4 300/100 mg BID with rifampicin 1200 mg OD. Dolutegravir 50 mg BID throughout the study period ensured participants remained protected from subtherapeutic atazanavir concentrations. The data was interpreted with noncompartmental analysis. The target minimum concentration was atazanavir's protein-adjusted IC90 (PA-IC90), 0.014 mg/L. RESULTS: We enrolled 26 participants (23 female) with median (range) age 44 (28-61) years and weight 67 (50-75) kg. Compared with PK1, atazanavir Ctau, and AUC were significantly reduced at PK2 by 96% and 85%, respectively. The escalation to BID dosing (PK3) reduced this difference in Ctau, and AUC24 to 18% lower and 8% higher, respectively. Comparable exposures were maintained with double doses of rifampicin. Lowest Ctau during PK1, PK3, and PK4 were 12.7-, 4.8-, and 8.6-fold higher than PA-IC90, respectively, while 65% of PK2 Ctau were below the limit of quantification (0.03 mg/L), hence likely below PA-IC90. No participant developed significant elevation of liver enzymes, reported an SAE, or experienced rebound viraemia. CONCLUSIONS: Twice daily atazanavir/ritonavir during rifampicin co-administration was well-tolerated and achieved plasma concentrations above the target.

5.
Clin Infect Dis ; 77(6): 875-882, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37315296

RESUMEN

BACKGROUND: We evaluated the pharmacokinetics of tenofovir alafenamide fumarate (TAF) and tenofovir in a subset of African children enrolled in the CHAPAS-4 trial. METHODS: Children aged 3-15 years with human immunodeficiency virus infection failing first-line antiretroviral therapy were randomized to emtricitabine/TAF versus standard-of-care nucleoside reverse transcriptase inhibitor combination, plus dolutegravir, atazanavir/ritonavir, darunavir/ritonavir, or lopinavir/ritonavir. Daily emtricitabine/TAF was dosed according to World Health Organization (WHO)-recommended weight bands: 120/15 mg in children weighing 14 to <25 kg and 200/25 mg in those weighing ≥25 kg. At steady state, 8-9 blood samples were taken to construct pharmacokinetic curves. Geometric mean (GM) area under the concentration-time curve (AUC) and the maximum concentration (Cmax) were calculated for TAF and tenofovir and compared to reference exposures in adults. RESULTS: Pharmacokinetic results from 104 children taking TAF were analyzed. GM (coefficient of variation [CV%]) TAF AUClast when combined with dolutegravir (n = 18), darunavir/ritonavir (n = 34), or lopinavir/ritonavir (n = 20) were 284.5 (79), 232.0 (61), and 210.2 (98) ng*hour/mL, respectively, and were comparable to adult reference values. When combined with atazanavir/ritonavir (n = 32), TAF AUClast increased to 511.4 (68) ng*hour/mL. For each combination, tenofovir GM (CV%) AUCtau and Cmax remained below reference values in adults taking 25 mg TAF with a boosted protease inhibitors. CONCLUSIONS: In children, TAF combined with boosted PIs or dolutegravir and dosed according to WHO-recommended weight bands provides TAF and tenofovir concentrations previously demonstrated to be well tolerated and effective in adults. These data provide the first evidence for use of these combinations in African children. CLINICAL TRIALS REGISTRATION: ISRCTN22964075.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Adulto , Niño , Humanos , Ritonavir/uso terapéutico , Sulfato de Atazanavir/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Lopinavir/uso terapéutico , Darunavir/uso terapéutico , Tenofovir/uso terapéutico , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Antivirales/uso terapéutico , Fumaratos/uso terapéutico , Fármacos Anti-VIH/uso terapéutico
6.
PLoS Med ; 20(11): e1004303, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37988391

RESUMEN

BACKGROUND: The current World Health Organization (WHO) pediatric tuberculosis dosing guidelines lead to suboptimal drug exposures. Identifying factors altering the exposure of these drugs in children is essential for dose optimization. Pediatric pharmacokinetic studies are usually small, leading to high variability and uncertainty in pharmacokinetic results between studies. We pooled data from large pharmacokinetic studies to identify key covariates influencing drug exposure to optimize tuberculosis dosing in children. METHODS AND FINDINGS: We used nonlinear mixed-effects modeling to characterize the pharmacokinetics of rifampicin, isoniazid, and pyrazinamide, and investigated the association of human immunodeficiency virus (HIV), antiretroviral therapy (ART), drug formulation, age, and body size with their pharmacokinetics. Data from 387 children from South Africa, Zambia, Malawi, and India were available for analysis; 47% were female and 39% living with HIV (95% on ART). Median (range) age was 2.2 (0.2 to 15.0) years and weight 10.9 (3.2 to 59.3) kg. Body size (allometry) was used to scale clearance and volume of distribution of all 3 drugs. Age affected the bioavailability of rifampicin and isoniazid; at birth, children had 48.9% (95% confidence interval (CI) [36.0%, 61.8%]; p < 0.001) and 64.5% (95% CI [52.1%, 78.9%]; p < 0.001) of adult rifampicin and isoniazid bioavailability, respectively, and reached full adult bioavailability after 2 years of age for both drugs. Age also affected the clearance of all drugs (maturation), children reached 50% adult drug clearing capacity at around 3 months after birth and neared full maturation around 3 years of age. While HIV per se did not affect the pharmacokinetics of first-line tuberculosis drugs, rifampicin clearance was 22% lower (95% CI [13%, 28%]; p < 0.001) and pyrazinamide clearance was 49% higher (95% CI [39%, 57%]; p < 0.001) in children on lopinavir/ritonavir; isoniazid bioavailability was reduced by 39% (95% CI [32%, 45%]; p < 0.001) when simultaneously coadministered with lopinavir/ritonavir and was 37% lower (95% CI [22%, 52%]; p < 0.001) in children on efavirenz. Simulations of 2010 WHO-recommended pediatric tuberculosis doses revealed that, compared to adult values, rifampicin exposures are lower in most children, except those younger than 3 months, who experience relatively higher exposure for all drugs, due to immature clearance. Increasing the rifampicin doses in children older than 3 months by 75 mg for children weighing <25 kg and 150 mg for children weighing >25 kg could improve rifampicin exposures. Our analysis was limited by the differences in availability of covariates among the pooled studies. CONCLUSIONS: Children older than 3 months have lower rifampicin exposures than adults and increasing their dose by 75 or 150 mg could improve therapy. Altered exposures in children with HIV is most likely caused by concomitant ART and not HIV per se. The importance of the drug-drug interactions with lopinavir/ritonavir and efavirenz should be evaluated further and considered in future dosing guidance. TRIAL REGISTRATION: ClinicalTrials.gov registration numbers; NCT02348177, NCT01637558, ISRCTN63579542.


Asunto(s)
Infecciones por VIH , Tuberculosis , Adulto , Recién Nacido , Niño , Humanos , Femenino , Lactante , Preescolar , Adolescente , Masculino , Ritonavir/farmacocinética , Ritonavir/uso terapéutico , Lopinavir/farmacocinética , Lopinavir/uso terapéutico , Rifampin , Isoniazida/uso terapéutico , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Antituberculosos , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Infecciones por VIH/tratamiento farmacológico , VIH
7.
Antimicrob Agents Chemother ; 67(12): e0061123, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37971239

RESUMEN

There are no pharmacokinetic data in children on terizidone, a pro-drug of cycloserine and a World Health Organization (WHO)-recommended group B drug for rifampicin-resistant tuberculosis (RR-TB) treatment. We collected pharmacokinetic data in children <15 years routinely receiving 15-20 mg/kg of daily terizidone for RR-TB treatment. We developed a population pharmacokinetic model of cycloserine assuming a 2-to-1 molecular ratio between terizidone and cycloserine. We included 107 children with median (interquartile range) age and weight of 3.33 (1.55, 5.07) years and 13.0 (10.1, 17.0) kg, respectively. The pharmacokinetics of cycloserine was described with a one-compartment model with first-order elimination and parallel transit compartment absorption. Allometric scaling using fat-free mass best accounted for the effect of body size, and clearance displayed maturation with age. The clearance in a typical 13 kg child was estimated at 0.474 L/h. The mean absorption transit time when capsules were opened and administered as powder was significantly faster compared to when capsules were swallowed whole (10.1 vs 72.6 min) but with no effect on bioavailability. Lower bioavailability (-16%) was observed in children with weight-for-age z-score below -2. Compared to adults given 500 mg daily terizidone, 2022 WHO-recommended pediatric doses result in lower exposures in weight bands 3-10 kg and 36-46 kg. We developed a population pharmacokinetic model in children for cycloserine dosed as terizidone and characterized the effects of body size, age, formulation manipulation, and underweight-for-age. With current terizidone dosing, pediatric cycloserine exposures are lower than adult values for several weight groups. New optimized dosing is suggested for prospective evaluation.


Asunto(s)
Cicloserina , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Humanos , Niño , Cicloserina/uso terapéutico , Cicloserina/farmacocinética , Rifampin/farmacocinética , Antituberculosos/farmacocinética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
8.
Antimicrob Agents Chemother ; 67(3): e0147422, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36815838

RESUMEN

Limited knowledge is available on the pharmacokinetics of rifampicin in children with tuberculous meningitis (TBM) and its penetration into brain tissue, which is the site of infection. In this analysis, we characterize the distribution of rifampicin in cerebrospinal fluid (CSF), lumbar (LCSF) and ventricular (VCSF), and brain extracellular fluid (ECF). Children with TBM were included in this pharmacokinetic analysis. Sparse plasma, LCSF, and VCSF samples were collected opportunistically, as clinically indicated. Brain ECF was sampled using microdialysis (MD). Rifampicin was quantified with liquid chromatography with tandem mass spectrometry in all samples, and 25-desacetyl rifampicin in the plasma samples. The data were interpreted with nonlinear mixed-effects modeling, with the CSF and brain ECF modeled as "effect compartments." Data were available from 61 children, with median (min-max) age of 2 (0.3 to 10) years and weight of 11.0 (4.8 to 49.0) kg. A one-compartment model for parent and metabolite with first-order absorption and elimination via saturable hepatic clearance described the data well. Allometric scaling, maturation, and auto-induction of clearance were included. The pseudopartition coefficient between plasma and LCSF/VCSF was ~5%, while the value for ECF was only ~0.5%, possibly reflecting low recovery of rifampicin using MD. The equilibration half-life between plasma and LCSF/VCSF was ~4 h and between plasma and ECF ~2 h. Our study confirms previous reports showing that rifampicin concentrations in the LCSF are lower than in plasma and provides novel knowledge about rifampicin in the VCSF and the brain tissue. Despite MD being semiquantitative because the relative recovery cannot be quantified, our study presents a proof-of-concept that rifampicin reaches the brain tissue and that MD is an attractive technique to study site-of-disease pharmacokinetics in TBM.


Asunto(s)
Líquido Extracelular , Tuberculosis Meníngea , Humanos , Niño , Preescolar , Rifampin , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Meníngea/metabolismo , Sudáfrica , Encéfalo/metabolismo
9.
Eur Respir J ; 61(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36328357

RESUMEN

BACKGROUND: Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level. METHODS: We systematically searched MEDLINE, Embase and Web of Science (1990-2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration-time curve from 0 to 24 h post-dose (AUC0-24) and peak plasma concentration (C max) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0-24 and C max were assessed with linear mixed-effects models. RESULTS: Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0-24 were summarised for isoniazid (18.7 (95% CI 15.5-22.6) h·mg·L-1), rifampicin (34.4 (95% CI 29.4-40.3) h·mg·L-1), pyrazinamide (375.0 (95% CI 339.9-413.7) h·mg·L-1) and ethambutol (8.0 (95% CI 6.4-10.0) h·mg·L-1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0-24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0-24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0-24 and slow acetylators had higher isoniazid AUC0-24 than intermediate acetylators. Determinants of C max were generally similar to those for AUC0-24. CONCLUSIONS: This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.


Asunto(s)
Antituberculosos , Isoniazida , Niño , Adolescente , Humanos , Preescolar , Antituberculosos/uso terapéutico , Isoniazida/uso terapéutico , Pirazinamida/uso terapéutico , Etambutol/uso terapéutico , Rifampin/uso terapéutico
10.
Clin Infect Dis ; 75(1): 141-151, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34665866

RESUMEN

BACKGROUND: In 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands. METHODS: Children with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC0-24h for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mg ∙ h/L). RESULTS: In total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to children < 6, 6-13, 13-20. and 20-25 kg, and 0.5 tablet in < 3-month-olds with immature metabolism, improved exposures to all 3 drugs. CONCLUSIONS: Current pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands.


Asunto(s)
Pirazinamida , Tuberculosis , Adulto , Antituberculosos/uso terapéutico , Niño , Combinación de Medicamentos , Etambutol/uso terapéutico , Femenino , Humanos , Lactante , Isoniazida , Masculino , Estudios Prospectivos , Pirazinamida/farmacocinética , Rifampin/uso terapéutico , Comprimidos/uso terapéutico , Tuberculosis/tratamiento farmacológico
11.
Clin Infect Dis ; 74(10): 1767-1775, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34420049

RESUMEN

BACKGROUND: Dispersible pediatric fixed-dose combination (FDC) tablets delivering higher doses of first-line antituberculosis drugs in World Health Organization-recommended weight bands were introduced in 2015. We report the first pharmacokinetic data for these FDC tablets in Zambian and South African children in the treatment-shortening SHINE trial. METHODS: Children weighing 4.0-7.9, 8.0-11.9, 12.0-15.9, or 16.0-24.9 kg received 1, 2, 3, or 4 tablets daily, respectively (rifampicin/isoniazid/pyrazinamide [75/50/150 mg], with or without 100 mg ethambutol, or rifampicin/isoniazid [75/50 mg]). Children 25.0-36.9 kg received doses recommended for adults <37 kg (300, 150, 800, and 550 mg/d, respectively, for rifampicin, isoniazid, pyrazinamide, and ethambutol). Pharmacokinetics were evaluated after at least 2 weeks of treatment. RESULTS: In the 77 children evaluated, the median age (interquartile range) was 3.7 (1.4-6.6) years; 40 (52%) were male and 20 (26%) were human immunodeficiency virus positive. The median area under the concentration-time curve from 0 to 24 hours for rifampicin, isoniazid, pyrazinamide, and ethambutol was 32.5 (interquartile range, 20.1-45.1), 16.7 (9.2-25.9), 317 (263-399), and 9.5 (7.5-11.5) mg⋅h/L, respectively, and lower in children than in adults for rifampicin in the 4.0-7.9-, 8-11.9-, and ≥25-kg weight bands, isoniazid in the 4.0-7.9-kg and ≥25-kg weight bands, and ethambutol in all 5 weight bands. Pyrazinamide exposures were similar to those in adults. CONCLUSIONS: Recommended weight band-based FDC doses result in lower drug exposures in children in lower weight bands and in those ≥25 kg (receiving adult doses). Further adjustments to current doses are needed to match current target exposures in adults. The use of ethambutol at the current World Health Organization-recommended doses requires further evaluation.


Asunto(s)
Pirazinamida , Tuberculosis , Adulto , Antituberculosos/uso terapéutico , Niño , Preescolar , Etambutol/uso terapéutico , Femenino , Humanos , Isoniazida/farmacocinética , Isoniazida/uso terapéutico , Masculino , Pirazinamida/farmacocinética , Rifampin/uso terapéutico , Tuberculosis/tratamiento farmacológico , Organización Mundial de la Salud
12.
Pharmacogenet Genomics ; 32(1): 24-30, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34369424

RESUMEN

OBJECTIVE: In AIDS Clinical Trials Group study A5338, concomitant rifampicin, isoniazid, and efavirenz was associated with more rapid plasma medroxyprogesterone acetate (MPA) clearance compared to historical controls without tuberculosis or HIV therapy. We characterized the pharmacogenetics of this interaction. METHODS: In A5338, women receiving efavirenz-based HIV therapy and rifampicin plus isoniazid for tuberculosis underwent pharmacokinetic evaluations over 12 weeks following a 150-mg intramuscular injection of depot MPA. Data were interpreted with nonlinear mixed-effects modelling. Associations between individual pharmacokinetic parameters and polymorphisms relevant to rifampicin, isoniazid, efavirenz, and MPA were assessed. RESULTS: Of 62 A5338 participants in four African countries, 44 were evaluable for pharmacokinetic associations, with 17 CYP2B6 normal, 21 intermediate, and 6 poor metabolizers, and 5 NAT2 rapid, 20 intermediate, and 19 slow acetylators. There were no associations between either CYP2B6 or NAT2 genotype and MPA Cmin at week 12, apparent clearance, Cmax, area under the concentration-time curve (AUC) or half-life, or unexplained interindividual variability in clearance, and uptake rate constant or mean transit time of the slow-release fraction (P > 0.05 for each). In exploratory analyses, none of 28 polymorphisms in 14 genes were consistently associated with MPA pharmacokinetic parameters, and none withstood correction for multiple testing. CONCLUSIONS: Study A5338 suggested that more frequent depot MPA dosing may be appropriate for women receiving rifampicin, isoniazid, and efavirenz. The present results suggest that knowledge of CYP2B6 metabolizer or NAT2 acetylator status does not inform individualized DMPA dosing in this setting.


Asunto(s)
Infecciones por VIH , Tuberculosis , Fármacos Anti-VIH/efectos adversos , Antituberculosos/efectos adversos , Benzoxazinas/efectos adversos , Interacciones Farmacológicas , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Isoniazida/efectos adversos , Acetato de Medroxiprogesterona/efectos adversos , Farmacogenética , Rifampin/efectos adversos , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética
13.
Antimicrob Agents Chemother ; 66(6): e0013622, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35583344

RESUMEN

Ritonavir-boosted darunavir (DRV/r) and dolutegravir (DTG) are affected by induction of metabolizing enzymes and efflux transporters caused by rifampicin (RIF). This complicates the treatment of people living with HIV (PLWH) diagnosed with tuberculosis. Recent data showed that doubling DRV/r dose did not compensate for this effect, and hepatic safety was unsatisfactory. We aimed to evaluate the pharmacokinetics of DRV, ritonavir (RTV), and DTG in the presence and absence of RIF in peripheral blood mononuclear cells (PBMCs). PLWH were enrolled in a dose-escalation crossover study with 6 treatment periods of 7 days. Participants started with DRV/r 800/100 mg once daily (QD), RIF and DTG were added before the RTV dose was doubled, and then they received DRV/r 800/100 twice daily (BD) and then 1,600/200 QD or vice versa. Finally, RIF was withdrawn. Plasma and intra-PBMC drug concentrations were measured through validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Seventeen participants were enrolled but only 4 completed all study phases due to high incidence of liver toxicity. Intra-PBMC DRV trough serum concentration (Ctrough) after the addition of RIF dropped from a median (interquartile range [IQR]) starting value of 261 ng/mL (158 to 577) to 112 ng/mL (18 to 820) and 31 ng/mL (12 to 331) for 800/100 BD and 1,600/200 QD DRV/r doses, respectively. The DRV intra-PBMC/plasma ratio increased significantly (P = 0.003). DTG and RIF intra-PBMC concentrations were in accordance with previous reports in the absence of RIF or DRV/r. This study showed a differential impact of enzyme and/or transporter induction on DRV/r concentrations in plasma and PBMCs, highlighting the usefulness of studying intra-PBMC pharmacokinetics with drug-drug interactions. (This study has been registered at ClinicalTrials.gov under registration no. NCT03892161.).


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Inhibidores de la Proteasa del VIH , Fármacos Anti-VIH/farmacocinética , Cromatografía Liquida , Estudios Cruzados , Darunavir/farmacocinética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/farmacología , Compuestos Heterocíclicos con 3 Anillos , Humanos , Leucocitos Mononucleares , Oxazinas , Piperazinas , Piridonas , Rifampin/farmacocinética , Rifampin/uso terapéutico , Ritonavir/farmacología , Espectrometría de Masas en Tándem
14.
Antimicrob Agents Chemother ; 66(6): e0226421, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35506699

RESUMEN

Treatment options for children with Rifampicin-resistant tuberculosis (RR-TB) remain limited, and para-aminosalicylic acid (PAS) is still a relevant component of treatment regimens. Prevention of resistance to companion drugs by PAS is dose related, and at higher concentrations, PAS may exhibit significant bactericidal activity in addition to its bacteriostatic properties. The optimal dosing of PAS in children is uncertain, specifically for delayed-release granule preparations, which are the most used. A population pharmacokinetic model was developed describing PAS pharmacokinetics in children receiving routine RR-TB treatment. Model-based simulations evaluated current World Health Organization (WHO) weight-band doses against the adult pharmacokinetic target of 50 to 100 mg/liter for peak concentrations. Of 27 children included, the median (range) age and weight were 3.87 (0.58 to 13.7) years and 13.3 (7.15 to 30.5) kg, respectively; 4 (14.8%) were HIV positive. PAS followed one-compartment kinetics with first-order elimination and transit compartment absorption. The typical clearance in a 13-kg child was 9.79 liters/h. Increased PAS clearance was observed in both pharmacokinetic profiles from the only patient receiving efavirenz. No effect of renal function, sex, ethnicity, nutritional status, HIV status, antiretrovirals (lamivudine, abacavir, and lopinavir-ritonavir), or RR-TB drugs was detected. In simulations, target concentrations were achieved only using the higher WHO dose range of 300 mg/kg once daily. A transit compartment adequately describes absorption for the slow-release PAS formulation. Children should be dosed at the higher range of current WHO-recommended PAS doses and in a once-daily dose to optimize treatment.


Asunto(s)
Ácido Aminosalicílico , Infecciones por VIH , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Ácido Aminosalicílico/farmacocinética , Ácido Aminosalicílico/uso terapéutico , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Niño , Esquema de Medicación , Infecciones por VIH/tratamiento farmacológico , Humanos , Rifampin/farmacocinética , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
15.
J Antimicrob Chemother ; 77(7): 1949-1959, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35466379

RESUMEN

OBJECTIVES: Ethambutol protects against the development of resistance to co-administered drugs in the intensive phase of first-line anti-TB treatment in children. It is especially relevant in settings with a high prevalence of HIV or isoniazid resistance. We describe the population pharmacokinetics of ethambutol in children with TB to guide dosing in this population. METHODS: We pooled data from 188 intensively sampled children from the DATiC, DNDi and SHINE studies, who received 15-25 mg/kg ethambutol daily according to WHO guidelines. The median (range) age and weight of the cohort were 1.9 (0.3-12.6) years and 9.6 (3.9-34.5) kg, respectively. Children with HIV (HIV+; n = 103) received ART (lopinavir/ritonavir in 92%). RESULTS: Ethambutol pharmacokinetics were best described by a two-compartment model with first-order elimination and absorption transit compartments. Clearance was estimated to reach 50% of its mature value by 2 months after birth and 99% by 3 years. Typical steady-state apparent clearance in a 10 kg child was 15.9 L/h. In HIV+ children on lopinavir/ritonavir, bioavailability was reduced by 32% [median (IQR) steady-state Cmax = 0.882 (0.669-1.28) versus 1.66 (1.21-2.15) mg/L). In young children, bioavailability correlated with age. At birth, bioavailability was 73.1% of that in children 3.16 years or older. CONCLUSIONS: To obtain exposure within the 2-6 mg/L recommended range for Cmax, the current doses must be doubled (or tripled with HIV+ children on lopinavir/ritonavir) for paediatric patients. This raises concerns regarding the potential for ocular toxicity, which would require evaluation.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Fármacos Anti-VIH/uso terapéutico , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Niño , Preescolar , Etambutol/farmacocinética , Etambutol/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Recién Nacido , Lopinavir/farmacocinética , Lopinavir/uso terapéutico , Ritonavir
16.
J Antimicrob Chemother ; 77(9): 2489-2499, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35678468

RESUMEN

BACKGROUND: The WHO-endorsed shorter-course regimen for MDR-TB includes high-dose isoniazid. The pharmacokinetics of high-dose isoniazid within MDR-TB regimens has not been well described. OBJECTIVES: To characterize isoniazid pharmacokinetics at 5-15 mg/kg as monotherapy or as part of the MDR-TB treatment regimen. METHODS: We used non-linear mixed-effects modelling to evaluate the combined data from INHindsight, a 7 day early bactericidal activity study with isoniazid monotherapy, and PODRtb, an observational study of patients on MDR-TB treatment including terizidone, pyrazinamide, moxifloxacin, kanamycin, ethionamide and/or isoniazid. RESULTS: A total of 58 and 103 participants from the INHindsight and PODRtb studies, respectively, were included in the analysis. A two-compartment model with hepatic elimination best described the data. N-acetyltransferase 2 (NAT2) genotype caused multi-modal clearance, and saturable first-pass was observed beyond 10 mg/kg dosing. Saturable isoniazid kinetics predicted an increased exposure of approximately 50% beyond linearity at 20 mg/kg dosing. Participants treated with the MDR-TB regimen had a 65.6% lower AUC compared with participants on monotherapy. Ethionamide co-administration was associated with a 29% increase in isoniazid AUC. CONCLUSIONS: Markedly lower isoniazid exposures were observed in participants on combination MDR-TB treatment compared with monotherapy. Isoniazid displays saturable kinetics at doses >10 mg/kg. The safety implications of these phenomena remain unclear.


Asunto(s)
Arilamina N-Acetiltransferasa , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Antituberculosos/efectos adversos , Arilamina N-Acetiltransferasa/farmacología , Etionamida/farmacología , Etionamida/uso terapéutico , Humanos , Isoniazida/farmacocinética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico
17.
Br J Clin Pharmacol ; 88(8): 3548-3558, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526837

RESUMEN

AIMS: We aimed to explore the effect of pregnancy on bedaquiline pharmacokinetics (PK) and describe bedaquiline exposure in the breast milk of mothers treated for rifampicin-resistant tuberculosis (TB), where there are no human data available. METHODS: We performed a longitudinal PK study in pregnant women treated for rifampicin-resistant TB to explore the effect of pregnancy on bedaquiline exposure. Pharmacokinetic sampling was performed at 4 time-points over 6 hours in the third trimester, and again at approximately 6 weeks postpartum. We obtained serial breast milk samples from breastfeeding mothers, and a single plasma sample taken from breastfed and nonbreastfed infants to assess bedaquiline exposure. We used liquid chromatography-tandem mass spectrometry to perform the breast milk and plasma bedaquiline assays, and population PK modelling to interpret the bedaquiline concentrations. RESULTS: We recruited 13 women, 6 of whom completed the ante- and postpartum PK sampling. All participants were HIV-positive on antiretroviral therapy. We observed lower ante- and postpartum bedaquiline exposures than reported in nonpregnant controls. Bedaquiline concentrations in breast milk were higher than maternal plasma (milk to maternal plasma ratio: 14:1). A single random plasma bedaquiline and M2 concentration was available in 4 infants (median age: 6.5 wk): concentrations in the 1 breastfed infant were similar to maternal plasma concentrations; concentrations in the 3 nonbreastfed infants were detectable but lower than maternal plasma concentrations. CONCLUSION: We report low exposure of bedaquiline in pregnant women treated for rifampicin-resistant TB. Bedaquiline significantly accumulates in breast milk; breastfed infants receive mg/kg doses of bedaquiline equivalent to maternal doses.


Asunto(s)
Lactancia Materna , Tuberculosis Resistente a Múltiples Medicamentos , Niño , Diarilquinolinas/uso terapéutico , Femenino , Humanos , Lactante , Leche Humana/química , Embarazo , Rifampin/farmacología , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
18.
Br J Clin Pharmacol ; 88(2): 403-415, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34260082

RESUMEN

AIMS: Abacavir is part of WHO-recommended regimens to treat HIV in children under 15 years of age. In a pooled analysis across four studies, we describe abacavir population pharmacokinetics to investigate the influence of age, concomitant medications, malnutrition and formulation. METHODS: A total of 230 HIV-infected African children were included, with median (range) age of 2.1 (0.1-12.8) years and weight of 9.8 (2.5-30.0) kg. The population pharmacokinetics of abacavir was described using nonlinear mixed-effects modelling. RESULTS: Abacavir pharmacokinetics was best described by a two-compartment model with first-order elimination, and absorption described by transit compartments. Clearance was predicted around 54% of its mature value at birth and 90% at 10 months. The estimated typical clearance at steady state was 10.7 L/h in a child weighing 9.8 kg co-treated with lopinavir/ritonavir, and was 12% higher in children receiving efavirenz. During coadministration of rifampicin-based antituberculosis treatment and super-boosted lopinavir in a 1:1 ratio with ritonavir, abacavir exposure decreased by 29.4%. Malnourished children living with HIV had higher abacavir exposure initially, but this effect waned with nutritional rehabilitation. An additional 18.4% reduction in clearance after the first abacavir dose was described, suggesting induction of clearance with time on lopinavir/ritonavir-based therapy. Finally, absorption of the fixed dose combination tablet was 24% slower than the abacavir liquid formulation. CONCLUSION: In this pooled analysis we found that children on lopinavir/ritonavir or efavirenz had similar abacavir exposures, while concomitant TB treatment and super-boosted lopinavir gave significantly reduced abacavir concentrations.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Desnutrición , Niño , Preescolar , Didesoxinucleósidos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Recién Nacido , Lopinavir/uso terapéutico , Ritonavir
19.
Antimicrob Agents Chemother ; 65(10): e0027821, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34310215

RESUMEN

Ethionamide is recommended as part of regimens to treat multidrug-resistant and rifampicin-resistant tuberculosis. This study was conducted to (i) describe the distribution of ethionamide MICs, (ii) describe the pharmacokinetics of ethionamide, and (iii) determine the probability of attaining target area under the concentration-time curve from 0 to 24 h (AUC0-24)/MIC values associated with suppression of resistant subpopulation and microbial kill. Participants received 15 to 20 mg of drug/kg of body weight of ethionamide daily (in 500- or 750-mg doses) as part of a multidrug regimen. Pretreatment MICs of ethionamide for Mycobacterium tuberculosis sputum isolates were determined using Sensititre MYCOTB MIC plates. Plasma concentrations of ethionamide (measured predose and at 2, 4, 6, 8, and 10 h postdose) were available for 84 patients. A one-compartment disposition model, including a liver compartment capturing hepatic extraction, best described ethionamide pharmacokinetics. Clearance and volume were allometrically scaled using fat-free mass. Isoniazid coadministration reduced ethionamide clearance by 31%, resulting in a 44% increase in AUC0-24. The median (range) MIC (n = 111) was 2.5 mg/liter (<0.3 to >40 mg/liter). Simulations showed increased daily doses of ethionamide (1,250 mg, 1,500 mg, and 1,750 mg for patients weighing ≤45 kg, 46 to 70 kg, and >70 kg, respectively) resulted in the probability of attaining an area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of a drug (fAUC0-24)/MIC ratio of ≥42 in more than 90% of patients only at the lowest MIC of 0.3 mg/liter. The WHO-recommended doses of ethionamide do not achieve target concentrations even for the lowest MIC measured in the cohort.


Asunto(s)
Etionamida , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Isoniazida , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
20.
Antimicrob Agents Chemother ; 65(11): e0239920, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370588

RESUMEN

Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.


Asunto(s)
Rifampin , Tuberculosis , Antituberculosos/uso terapéutico , Cromatografía Liquida , Diarilquinolinas , Humanos , Leucocitos Mononucleares , Rifampin/uso terapéutico , Espectrometría de Masas en Tándem , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA