RESUMEN
Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.
Asunto(s)
Giro del Cíngulo , Macaca mulatta , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Masculino , Femenino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Acetilcolina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/fisiologíaRESUMEN
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Asunto(s)
Agregado de Proteínas , Agregación Patológica de Proteínas , Multimerización de Proteína , Antígeno Intracelular 1 de las Células T/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/metabolismo , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas con Motivos de Reconocimiento de ARN/química , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas Recombinantes , Proteínas tau/químicaRESUMEN
Understanding the unique functions of different subregions of primate prefrontal cortex has been a longstanding goal in cognitive neuroscience. Yet, the anatomy and function of one of its largest subregions (the frontopolar cortex) remain enigmatic and underspecified. Our Society for Neuroscience minisymposium Primate Frontopolar Cortex: From Circuits to Complex Behaviors will comprise a range of new anatomic and functional approaches that have helped to clarify the basic circuit anatomy of the frontal pole, its functional involvement during performance of cognitively demanding behavioral paradigms in monkeys and humans, and its clinical potential as a target for noninvasive brain stimulation in patients with brain disorders. This review consolidates knowledge about the anatomy and connectivity of frontopolar cortex and provides an integrative summary of its function in primates. We aim to answer the question: what, if anything, does frontopolar cortex contribute to goal-directed cognition and action?
Asunto(s)
Cognición , Objetivos , Animales , Humanos , Cognición/fisiología , Corteza Prefrontal/fisiología , Lóbulo Frontal/fisiología , Primates , HaplorrinosRESUMEN
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
Asunto(s)
Vesículas Extracelulares , Microglía , Femenino , Animales , Macaca mulatta , Complemento C1q , Recuperación de la FunciónRESUMEN
The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.
Asunto(s)
Giro del Cíngulo , Corteza Prefrontal , Potenciales de Acción/fisiología , Dendritas , Giro del Cíngulo/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiologíaRESUMEN
Down syndrome (DS), or trisomy 21, is manifested in a variety of anatomical and cellular abnormalities resulting in intellectual deficits and early onset of Alzheimer's disease (AD) with no effective treatments available to alleviate the pathologies associated with the disorder. The therapeutic potential of extracellular vesicles (EVs) has emerged recently in relation to various neurological conditions. We have previously demonstrated the therapeutic efficacy of mesenchymal stromal cell-derived EVs (MSC-EVs) in cellular and functional recovery in a rhesus monkey model of cortical injury. In the current study, we evaluated the therapeutic effect of MSC-EVs in a cortical spheroid (CS) model of DS generated from patient-derived induced pluripotent stem cells (iPSCs). Compared to euploid controls, trisomic CS display smaller size, deficient neurogenesis, and AD-related pathological features, such as enhanced cell death and depositions of amyloid beta (Aß) and hyperphosphorylated tau (p-tau). EV-treated trisomic CS demonstrated preserved size, partial rescue in the production of neurons, significantly decreased levels of Aß and p-tau, and a reduction in the extent of cell death as compared to the untreated trisomic CS. Together, these results show the efficacy of EVs in mitigating DS and AD-related cellular phenotypes and pathological depositions in human CS.
Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Vesículas Extracelulares , Humanos , Síndrome de Down/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Vesículas Extracelulares/metabolismo , Neuronas/metabolismoRESUMEN
Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.
Asunto(s)
Microglía , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal , Encéfalo , Modelos Animales de Enfermedad , Femenino , Inflamación , Factor Estimulante de Colonias de Macrófagos , Ratones , Neuronas , Embarazo , Receptores de Factor Estimulante de Colonias de Granulocitos y MacrófagosRESUMEN
Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.
Asunto(s)
Lesiones Encefálicas/terapia , Vesículas Extracelulares , Células Madre Mesenquimatosas , Corteza Motora/patología , Células Piramidales/patología , Recuperación de la Función/fisiología , Animales , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Masculino , Corteza Motora/fisiopatología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiologíaRESUMEN
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Asunto(s)
Envejecimiento , Encéfalo/patología , Primates , Enfermedad de Alzheimer , Animales , Angiopatía Amiloide CerebralRESUMEN
How the variety of neurons that organize into neocortical layers and functional areas arises is a central question in the study of cortical development. While both intrinsic and extrinsic cues are known to influence this process, whether distinct neuronal progenitor groups contribute to neuron diversity and allocation is poorly understood. Using in vivo genetic fate-mapping combined with whole-cell patch clamp recording, we show that the firing pattern and apical dendritic morphology of excitatory neurons in layer 4 of the barrel cortex are specified in part by their neural precursor lineage. Further, we show that separate precursors contribute to unique features of barrel cortex topography including the intralaminar position and thalamic innervation of the neurons they generate. Importantly, many of these lineage-specified characteristics are different from those previously measured for pyramidal neurons in layers 2-3 of the frontal cortex. Collectively, our data elucidate a dynamic temporal program in neuronal precursors that fine-tunes the properties of their progeny according to the lamina of destination.
Asunto(s)
Células-Madre Neurales/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Potenciales de Acción , Animales , Espinas Dendríticas , Femenino , Masculino , Ratones , Modelos Neurológicos , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Células Piramidales/citología , Corteza Somatosensorial/citología , Proteínas de Dominio T Box/metabolismoRESUMEN
INTRODUCTION: Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aß) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. METHODS: EVs were isolated from the cortical gray matter of 20 AD and 18 control brains. Tau and Aß levels were measured by immunoassay. Differentially expressed EV proteins were assessed by quantitative proteomics and machine learning. RESULTS: Levels of pS396 tau and Aß1-42 were significantly elevated in AD EVs. High levels of neuron- and glia-specific factors are detected in control and AD EVs, respectively. Machine learning identified ANXA5, VGF, GPM6A, and ACTZ in AD EV compared to controls. They distinguished AD EVs from controls in the test sets with 88% accuracy. DISCUSSION: In addition to Aß and tau, ANXA5, VGF, GPM6A, and ACTZ are new signature proteins in AD EVs.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteoma , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Fosforilación , Proteómica , Proteínas tau/metabolismoRESUMEN
The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) of the primate play distinctive roles in the mediation of complex cognitive tasks. Compared with the LPFC, integration of information by the ACC can span longer timescales and requires stronger engagement of inhibitory processes. Here, we reveal the synaptic mechanism likely to underlie these differences using in vitro patch-clamp recordings of synaptic events and multiscale imaging of synaptic markers in rhesus monkeys. Although excitatory synaptic signaling does not differ, the level of synaptic inhibition is much higher in ACC than LPFC layer 3 pyramidal neurons, with a significantly higher frequency (â¼6×) and longer duration of inhibitory synaptic currents. The number of inhibitory synapses and the ratio of cholecystokinin to parvalbumin-positive inhibitory inputs are also significantly higher in ACC compared with LPFC neurons. Therefore, inhibition is functionally and structurally more robust and diverse in ACC than in LPFC, resulting in a lower excitatory: inhibitory ratio and a greater dynamic range for signal integration and network oscillation by the ACC. These differences in inhibitory circuitry likely underlie the distinctive network dynamics in ACC and LPC during normal and pathological brain states.SIGNIFICANCE STATEMENT The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) play temporally distinct roles during the execution of cognitive tasks (rapid working memory during ongoing tasks and long-term memory to guide future action, respectively). Compared with LPFC-mediated tasks, ACC-mediated tasks can span longer timescales and require stronger engagement of inhibition. This study shows that inhibitory signaling is much more robust and diverse in the ACC than in the LPFC. Therefore, there is a lower excitatory: inhibitory synaptic ratio and a greater dynamic range for signal integration and oscillatory behavior in the ACC. These significant differences in inhibitory synaptic transmission form an important basis for the differential timing of cognitive processing by the LPFC and ACC in normal and pathological brain states.
Asunto(s)
Giro del Cíngulo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Animales , Femenino , Giro del Cíngulo/citología , Macaca mulatta , Masculino , Red Nerviosa/citología , Corteza Prefrontal/citologíaRESUMEN
A principal challenge of systems neuroscience is to understand the unique characteristics of cortical neurons and circuits that enable area- and species-specific sensory encoding, motor function, cognition, and behavior. To address this issue, we compared properties of layer 3 pyramidal neurons in 2 cortical areas that span a broad range of cortical function-primary sensory (V1), to cognitive (frontal)-in the mouse and the rhesus monkey. Hierarchical clustering and discriminant analyses of 15 physiological and 25 morphological variables revealed 2 fundamental principles. First, V1 and frontal neurons are remarkably similar with regard to nearly every property in the mouse, while the opposite is true in the monkey, with V1 and frontal neurons exhibiting significant differences in nearly every property assessed. Second, neurons within visual and frontal areas differ significantly between the mouse and the monkey. Neurons in mouse and monkey V1 are the same size, but differ in nearly every other way; mouse frontal cortical neurons are smaller than those in the monkey and also differ substantially with regard to most other properties. These findings have broad implications for understanding the differential contributions of heterogeneous neuronal types in construction of cortical microcircuitry in diverse brain areas and species.
Asunto(s)
Lóbulo Frontal/citología , Macaca mulatta/anatomía & histología , Ratones/anatomía & histología , Células Piramidales/citología , Corteza Somatosensorial/citología , Animales , Tamaño de la Célula , Análisis por Conglomerados , Lóbulo Frontal/fisiología , Procesamiento de Imagen Asistido por Computador , Macaca mulatta/fisiología , Potenciales de la Membrana/fisiología , Ratones/fisiología , Microscopía Confocal , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Corteza Somatosensorial/fisiologíaRESUMEN
Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2-3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained â¼ 1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1.
Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/fisiología , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Corteza Visual/fisiología , Animales , Femenino , Macaca mulatta , Masculino , Técnicas de Cultivo de ÓrganosRESUMEN
Several neural precursor populations contemporaneously generate neurons in the developing neocortex. Specifically, radial glial stem cells of the dorsal telencephalon divide asymmetrically to produce excitatory neurons, but also indirectly to produce neurons via three types of intermediate progenitor cells. Why so many precursor types are needed to produce neurons has not been established; whether different intermediate progenitor cells merely expand the output of radial glia or instead generate distinct types of neurons is unknown. Here we use a novel genetic fate mapping technique to simultaneously track multiple precursor streams in the developing mouse brain and show that layer 2 and 3 pyramidal neurons exhibit distinctive electrophysiological and structural properties depending upon their precursor cell type of origin. These data indicate that individual precursor subclasses synchronously produce functionally different neurons, even within the same lamina, and identify a primary mechanism leading to cortical neuronal diversity.
Asunto(s)
Linaje de la Célula/fisiología , Neocórtex/citología , Red Nerviosa/fisiología , Células-Madre Neurales/clasificación , Células-Madre Neurales/fisiología , Células Piramidales/fisiología , Animales , Electroporación , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Luminiscentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neocórtex/embriología , Técnicas de Placa-Clamp , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismoRESUMEN
Which principles determine the organization of the intricate network formed by nerve fibers that link the primate cerebral cortex? We addressed this issue for the connections of primate visual cortices by systematically analyzing how the existence or absence of connections, their density as well as laminar patterns of projection origins and terminations are correlated with distance, similarity in cortical type as well as neuronal density or the thickness of cortical areas. Analyses were based on four extensive compilations of qualitative as well as quantitative data for connections of the primate visual cortical system in macaque monkeys (Felleman and Van Essen 1991; Barbas 1986; Barbas and Rempel-Clower 1997; Barone et al. 2000; Markov et al. 2014). Distance and thickness similarity were not consistently correlated with connection features, but similarity of cortical type, determined by qualitative features of laminar differentiation, or measured quantitatively as the areas' overall neuronal density, was a reliable predictor for the existence of connections between areas. Cortical type similarity was also consistently and closely correlated with characteristic laminar connection profiles: structurally dissimilar areas had origin and termination patterns that were biased to the upper or deep cortical layers, while similar areas showed more bilaminar origins and terminations. These results suggest that patterns of corticocortical connections of primate visual cortices are closely linked to the stratified architecture of the cerebral cortex. In particular, the regularity of laminar projection origins and terminations arises from the structural differences between cortical areas. The observed integration of projections with the intrinsic cortical architecture provides a structural basis for advanced theories of cortical organization and function.
Asunto(s)
Conectoma , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Animales , Recuento de Células , Macaca , Modelos Neurológicos , Vías Nerviosas/citología , Neuronas/citología , Corteza Visual/citología , Vías Visuales/citologíaRESUMEN
The effects of normal aging on morphologic and electrophysiologic properties of layer 3 pyramidal neurons in rhesus monkey primary visual cortex (V1) were assessed with whole-cell, patch-clamp recordings in in vitro slices. In another cohort of monkeys, the ultrastructure of synapses in the layers 2-3 neuropil of V1 was assessed using electron microscopy. Distal apical dendritic branching complexity was reduced in aged neurons, as was the total spine density, due to specific loss of mushroom spines from the apical tree and of thin spines from the basal tree. There was also an age-related decrease in the numerical density of symmetric and asymmetric synapses. In contrast to these structural changes, intrinsic membrane, action potential (AP), and excitatory and inhibitory synaptic current properties were the same in aged and young neurons. Computational modeling using morphologic reconstructions predicts that reduced dendritic complexity leads to lower attenuation of voltage outward from the soma (e.g., backpropagating APs) in aged neurons. Importantly, none of the variables that changed with age differed in neurons from cognitively impaired versus unimpaired aged monkeys. In summary, there are age-related alterations to the structural properties of V1 neurons, but these are not associated with significant electrophysiologic changes or with cognitive decline.
Asunto(s)
Envejecimiento , Cognición/fisiología , Células Piramidales/fisiología , Corteza Visual/citología , Animales , Simulación por Computador , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Lisina/análogos & derivados , Macaca mulatta , Masculino , Potenciales de la Membrana/fisiología , Microscopía Electrónica , Modelos Neurológicos , Pruebas Neuropsicológicas , Técnicas de Placa-Clamp , Células Piramidales/ultraestructura , Sinapsis/ultraestructuraRESUMEN
Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Microglía , Complemento C1q/genética , Complemento C1q/metabolismo , Antígeno CD47/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo , Sinapsis/metabolismoRESUMEN
Normal aging, though lacking widespread neurodegeneration, is nevertheless characterized by cognitive impairment in learning, memory, and executive function. The aged brain is spared from neuron loss, but white matter is lost and damage to myelin sheaths accumulates. This myelin damage is strongly associated with cognitive impairment. Although the cause of the myelin damage is not known, microglia dysregulation is a likely contributor. Immunologic proteins interact with microglial receptors to modulate microglia-mediated phagocytosis, which mediates myelin damage clearance and turn-over. Two such proteins, "eat me" signal C1q and "don't eat me" signal CD47, act in opposition with microglia. Both C1q and CD47 have been implicated in Multiple Sclerosis, a demyelinating disease, but whether they play a role in age-related myelin pathology is currently unknown. The present study investigates C1q and CD47 in relation to age-related myelin degeneration using multilabel immunofluorescence, RNAscope, and confocal microscopy in the cingulum bundle of male and female rhesus monkeys across the lifespan. Our findings showed significant age-related elevation in C1q localized to myelin basic protein, and this increase is associated with more severe cognitive impairment. In contrast, CD47 localization to myelin decreased in middle age and oligodendrocyte expression of CD47 RNA decreased with age. Lastly, microglia reactivity increased with age in association with the changes in C1q and CD47. Together, these results suggest disruption in the balance of "eat me" and "don't eat me" signals during normal aging, biasing microglia toward increased reactivity and phagocytosis of myelin, resulting in cognitive deficits.
Asunto(s)
Envejecimiento , Encéfalo , Antígeno CD47 , Disfunción Cognitiva , Complemento C1q , Macaca mulatta , Microglía , Vaina de Mielina , Animales , Antígeno CD47/metabolismo , Microglía/metabolismo , Microglía/inmunología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Complemento C1q/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Envejecimiento/metabolismo , Femenino , Masculino , Encéfalo/metabolismo , Encéfalo/patologíaRESUMEN
Gulf War Illness (GWI) is a disorder experienced by many veterans of the 1991 Gulf War, with symptoms including fatigue, chronic pain, respiratory and memory problems. Exposure to toxic chemicals during the war, such as oil well fire smoke, pesticides, physiological stress, and nerve agents, is thought to have triggered abnormal neuroinflammatory responses that contribute to GWI. Previous studies have examined the acute effects of combined physiological stress and chemical exposures using GWI rodent models and presented findings related to neuroinflammation and changes in diffusion magnetic resonance imaging (MRI) measures, suggesting a neuroimmune basis for GWI. In the current study, using ex vivo MRI, cytokine mRNA expression, and immunohistological analyses of brain tissues, we examined the brain structure and immune function of a chronic rat model of GWI. Our data showed that a combination of long-term corticosterone treatment (to mimic high physiological stress) and diisopropyl fluorophosphate exposure (to mimic sarin exposure) primed the response to subsequent systemic immune challenge with lipopolysaccharide resulting in elevations of multiple cytokine mRNAs, an increased activated glial population, and disrupted brain microstructure in the cingulate cortex and hippocampus compared to control groups. Our findings support the critical role of neuroinflammation, dysregulated glial activation, and their relationship to disrupted brain microstructural integrity in the pathophysiology of GWI and highlight the unique consequences of long-term combined exposures on brain biochemistry and structural connectivity.