Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 23(6): 2459-2470, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35499242

RESUMEN

Naturally occurring oligoamines, such as spermine, spermidine, and putrescine, are well-known regulators of gene expression. These oligoamines frequently have short alkyl spacers with varying lengths between the amines. Linear polyethylenimine (PEI) is a polyamine that has been widely applied as a gene vector, with various formulations currently in clinical trials. In order to emulate natural oligoamine gene regulators, linear random copolymers containing both PEI and polypropylenimine (PPI) repeat units were designed as novel gene delivery agents. In general, statistical copolymerization of 2-oxazolines and 2-oxazines leads to the formation of gradient copolymers. In this study, however, we describe for the first time the synthesis of near-ideal random 2-oxazoline/2-oxazine copolymers through careful tuning of the monomer structures and reactivity as well as polymerization conditions. These copolymers were then transformed into near-random PEI-PPI copolymers by controlled side-chain hydrolysis. The prepared PEI-PPI copolymers formed stable polyplexes with GFP-encoding plasmid DNA, as validated by dynamic light scattering. Furthermore, the cytotoxicity and transfection efficiency of polyplexes were evaluated in C2C12 mouse myoblasts. While the polymer chain length did not significantly increase the toxicity, a higher PPI content was associated with increased toxicity and also lowered the amount of polymers needed to achieve efficient transfection. The transfection efficiency was significantly influenced by the degree of polymerization of PEI-PPI, whereby longer polymers resulted in more transfected cells. Copolymers with 60% or lower PPI content exhibited a good balance between high plasmid-DNA transfection efficiency and low toxicity. Interestingly, these novel PEI-PPI copolymers revealed exceptional serum tolerance, whereby transfection efficiencies of up to 53% of transfected cells were achieved even under 50% serum conditions. These copolymers, especially PEI-PPI with DP500 and a 1:1 PEI/PPI ratio, were identified as promising transfection agents for plasmid DNA.


Asunto(s)
ADN , Polímeros , Animales , Aziridinas , ADN/química , Técnicas de Transferencia de Gen , Ratones , Plásmidos/genética , Polietileneimina/química , Polímeros/química , Transfección
2.
Biomacromolecules ; 17(12): 4027-4036, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27768273

RESUMEN

Carbohydrates are important in signaling, energy storage, and metabolism. Depending on their function, carbohydrates can be part of larger structures, such as glycoproteins, glycolipids, or other functionalities (glycoside). To this end, polymers can act as carriers of carbohydrates in so-called glycopolymers, which mimic the multivalent carbohydrate functionalities. We chose a biocompatible poly(2-ethyl-2-oxazoline) (PEtOx) as the basis for making glycopolymers. Via the partial hydrolysis of PEtOx, a copolymer of PEtOx and polyethylenimine (PEI) was obtained; the subsequent reductive amination with the linear forms of glucose and maltose yielded the glycopolymers. The ratios of PEtOx and carbohydrates were varied systematically, and the solution behaviors of the resulting glycoconjugates are discussed. Dynamic light scattering (DLS) revealed that, depending on the carbohydrate ratio, the glycopolymers were either fully water-soluble or formed agglomerates in a temperature-dependent manner. Finally, these polymers were tested for their biological availability by studying their lectin binding ability with Concanavalin A.


Asunto(s)
Carbohidratos/química , Glicoconjugados/química , Poliaminas/química , Polímeros/química , Agua/química , Aminación , Hidrólisis , Temperatura
3.
Environ Pollut ; 307: 119511, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35613682

RESUMEN

Plastics are produced and used in large quantities worldwide (e.g. as food packaging). In line with this, plastic particles are found throughout the ecosphere and in various foods. As a result, plastics are also present in energy-rich waste biomass derived from the food industry, supermarkets, restaurants, etc. These waste streams are a valuable source for biogas production but can also be used to feed insects that in turn upcycle it into new high-value biomass. In both applications, the remaining residue can be used as fertilizer. Due to the present plastic particles, these applications could pose a continued threat to the environment, and both human and animal health. Therefore, the need of determining the (micro)plastic content to assess the potential danger is rising. In this research, a closed-vessel microwave-assisted acid digestion method was developed to accurately determine meso- and microplastic contents in food (waste) matrices by solubilising this food matrix. Polyvinyl chloride (PVC) food packaging foil was used to develop the method, using a full factorial design with three parameters (nitric acid concentration (c(HNO3)), temperature (T), and time (t)). According to this model, the best practical conditions were c(HNO3) = 0.50 mol/L, T = 170 °C, and t = 5.00 min. Subsequently, the method was tested on five other plastics, namely high- and low-density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET), mixed with a food matrix, resulting in a mean plastic recovery of 102.2 ± 4.1%. Additionally, the polymers were not oxidised during the microwave digestion. For PVC and PS hardly any degradation was found, while HDPE, LDPE, and PP showed slight chain degradation, although without recovery loss. In conclusion, the method is an accurate approach to quantify the total meso- and microplastic content in food (waste) matrices with minimal change in their intrinsic characteristics.


Asunto(s)
Plásticos , Eliminación de Residuos , Animales , Alimentos , Microplásticos , Plásticos/química , Polietileno , Polipropilenos , Poliestirenos/química , Cloruro de Polivinilo , Eliminación de Residuos/métodos
4.
Pharmaceutics ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36678656

RESUMEN

Efficient wound repair is crucial for mammalian survival. Healing of skin wounds is severely hampered in diabetic patients, resulting in chronic non-healing wounds that are difficult to treat. High-mobility group box 1 (HMGB1) is an important signaling molecule that is released during wounding, thereby delaying regenerative responses in the skin. Here, we show that dissolving glycyrrhizin, a potent HMGB1 inhibitor, in water results in the formation of a hydrogel with remarkable rheological properties. We demonstrate that these glycyrrhizin-based hydrogels accelerate cutaneous wound closure in normoglycemic and diabetic mice by influencing keratinocyte migration. To facilitate topical application of glycyrrhizin hydrogels on cutaneous wounds, several concentrations of glycyrrhizinic acid in water were tested for their rheological, structural, and biological properties. By varying the concentration of glycyrrhizin, these hydrogel properties can be readily tuned, enabling customized wound care.

5.
Carbohydr Polym ; 250: 116974, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049866

RESUMEN

The surface initiated ring opening polymerization (SI-ROP) of cellulose nanofibers (CNF) with rac-Lactide under mild conditions using N,N-dimethyl aminopyridine (DMAP) was investigated. The influence of catalyst amount, monomer-to-initiator (cellulose surface -OH groups) ratio, temperature, and cellulose preconditioning (lyophilization vs solvent exchange) were studied to determine the best SI-ROP conditions, and to understand the effect of the parameters on grafting efficiency. The fibers modified after lyophilization had a PLA content comparable to those obtained with traditional metal catalysts (e.g. tin-(II)ethylhexanoate). Starting from a stable dispersion of CNF in dichloromethane obtained through solvent-exchange showed better results at low catalyst amounts. Furthermore, DMAP was readily removed from the products whereas metal catalysts can be hard to remove from the final material, potentially shortening the material lifespan and making it unfit for some applications. Therefore, the use of an easily removable and more efficient organocatalyst can be considered a good alternative to metal catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA