Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 739, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874886

RESUMEN

Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.


Asunto(s)
Acrilamida , Estrés Oxidativo , Espermatozoides , Testículo , Masculino , Acrilamida/toxicidad , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Humanos , Testículo/efectos de los fármacos , Testículo/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología
2.
Int J Vasc Med ; 2016: 1656212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27478641

RESUMEN

Background. Intravenous tissue plasminogen activator, a time dependent therapy, can reduce the morbidity and mortality of acute ischemic stroke. This study was designed to assess the effect of simple in-hospital interventions on reducing door-to-CT (DTC) time and reaching door-to-needle (DTN) time of less than 60 minutes. Methods. Before any intervention, DTC time was recorded for 213 patients over a one-year period at our center. Five simple quality-improvement interventions were implemented, namely, call notification, prioritizing patients for CT scan, prioritizing patients for lab analysis, specifying a bed for acute stroke patients, and staff education. After intervention, over a course of 44 months, DTC time was recorded for 276 patients with the stroke code. Furthermore DTN time was recorded for 106 patients who were treated with IV thrombolytic therapy. Results. The median DTC time significantly decreased in the postintervention period comparing to the preintervention period [median (IQR); 20 (12-30) versus 75 (52.5-105), P < 0.001]. At the postintervention period, the median (IQR) DTN time was 55 (40-73) minutes and proportion of patients with DTN time less than 60 minutes was 62.4% (P < 0.001). Conclusion. Our interventions significantly reduced DTC time and resulted in an acceptable DTN time. These interventions are feasible in most hospitals and should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA