RESUMEN
The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS - a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Coloración y Etiquetado/métodos , Animales , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Replicación del ADN , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Colorantes Fluorescentes , Expresión Génica , Vectores Genéticos , Microscopía FluorescenteRESUMEN
The zebrafish has earned its place among animal models to study tuberculosis and other infections caused by pathogenic mycobacteria. This model host is especially useful to study the role of granulomas, the inflammatory lesions characteristic of mycobacterial disease. The optically transparent zebrafish larvae provide a window on the initial stages of granuloma development in the context of innate immunity. Application of fluorescent dyes and transgenic markers enabled real-time visualization of how innate immune mechanisms, such as autophagy and inflammasomes, are activated in infected macrophages and how propagating calcium signals drive communication between macrophages during granuloma formation. A combination of imaging, genetic, and chemical approaches has revealed that the interplay between macrophages and mycobacteria is the main driver of tissue dissemination and granuloma development, while neutrophils have a protective function in early granulomas. Different chemokine signaling axes, conserved between humans and zebrafish, have been shown to recruit macrophages permissive to mycobacterial growth, control their microbicidal capacity, drive their spreading and aggregation, and mediate granuloma vascularization. Finally, zebrafish larvae are now exploited to explore cell death processes, emerging as crucial factors in granuloma expansion. In this review, we discuss recent advances in the understanding of mycobacterial pathogenesis contributed by zebrafish models.
Asunto(s)
Mycobacterium , Tuberculosis , Animales , Granuloma/microbiología , Granuloma/patología , Larva , Tuberculosis/microbiología , Virulencia , Pez Cebra/microbiologíaRESUMEN
In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.
Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Ceramidasa Ácida , Animales , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidas , Humanos , Psicosina/análogos & derivados , Pez Cebra/genéticaRESUMEN
Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer.
Asunto(s)
Mucosa Intestinal/metabolismo , Microbiota , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Notch/metabolismo , Animales , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Transducción de Señal/fisiología , Pez Cebra/metabolismoRESUMEN
Mycobacterial pathogens are the causative agents of chronic infectious diseases like tuberculosis and leprosy. Autophagy has recently emerged as an innate mechanism for defense against these intracellular pathogens. In vitro studies have shown that mycobacteria escaping from phagosomes into the cytosol are ubiquitinated and targeted by selective autophagy receptors. However, there is currently no in vivo evidence for the role of selective autophagy receptors in defense against mycobacteria, and the importance of autophagy in control of mycobacterial diseases remains controversial. Here we have used Mycobacterium marinum (Mm), which causes a tuberculosis-like disease in zebrafish, to investigate the function of two selective autophagy receptors, Optineurin (Optn) and SQSTM1 (p62), in host defense against a mycobacterial pathogen. To visualize the autophagy response to Mm in vivo, optn and p62 zebrafish mutant lines were generated in the background of a GFP-Lc3 autophagy reporter line. We found that loss-of-function mutation of optn or p62 reduces autophagic targeting of Mm, and increases susceptibility of the zebrafish host to Mm infection. Transient knockdown studies confirmed the requirement of both selective autophagy receptors for host resistance against Mm infection. For gain-of-function analysis, we overexpressed optn or p62 by mRNA injection and found this to increase the levels of GFP-Lc3 puncta in association with Mm and to reduce the Mm infection burden. Taken together, our results demonstrate that both Optn and p62 are required for autophagic host defense against mycobacterial infection and support that protection against tuberculosis disease may be achieved by therapeutic strategies that enhance selective autophagy.
Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Mycobacterium marinum/patogenicidad , Animales , Animales Modificados Genéticamente , Autofagia/fisiología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Humanos , Macrófagos , Proteínas de Transporte de Membrana , Mycobacterium/patogenicidad , Infecciones por Mycobacterium/metabolismo , Fagosomas , Proteína Sequestosoma-1 , Factor de Transcripción TFIIIA/metabolismo , Tuberculosis , Ubiquitina , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismoRESUMEN
Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tuberculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In this study we use an Il-1ß fluorescent transgenic line to show that there is an early innate immune proinflammatory response to well-established zebrafish models of inflammation and Mycobacterium marinum infection. We demonstrate that host-derived hypoxia signaling, mediated by the Hif-1α transcription factor, can prime macrophages with increased levels of Il-1ß in the absence of infection, upregulating neutrophil antimicrobial NO production, leading to greater protection against infection. Our data link Hif-1α to proinflammatory macrophage Il-1ß transcription in vivo during early mycobacterial infection and importantly highlight a host protective mechanism, via antimicrobial NO, that decreases disease outcomes and that could be targeted therapeutically to stimulate the innate immune response to better deal with infections.
Asunto(s)
Hipoxia/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/fisiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Animales , Animales Modificados Genéticamente , Antituberculosos/metabolismo , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad Innata , Interleucina-1beta/genética , Óxido Nítrico/metabolismo , Pez CebraRESUMEN
ß-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1-/-), Gba2 (gba2-/-), and double (gba1-/-:gba2-/-) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1-/- larvae (0.09 pmol/fish) but did not increase more in gba1-/-:gba2-/- larvae. GlcCer was comparable in gba1-/- and WT larvae but increased in gba2-/- and gba1-/-:gba2-/- larvae. Independent of Gba1 status, GlcChol was low in all gba2-/- larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.
Asunto(s)
Glucosilceramidasa/deficiencia , Glicoesfingolípidos/metabolismo , Modelos Biológicos , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo , beta-Glucosidasa/metabolismo , Animales , Células Cultivadas , Glucosilceramidasa/metabolismo , Pez Cebra , beta-Glucosidasa/deficienciaRESUMEN
BACKGROUND: The function of Toll-like receptor 2 (TLR2) in host defense against pathogens, especially Mycobacterium tuberculosis (Mtb) is poorly understood. To investigate the role of TLR2 during mycobacterial infection, we analyzed the response of tlr2 zebrafish mutant larvae to infection with Mycobacterium marinum (Mm), a close relative to Mtb, as a model for tuberculosis. We measured infection phenotypes and transcriptome responses using RNA deep sequencing in mutant and control larvae. RESULTS: tlr2 mutant embryos at 2 dpf do not show differences in numbers of macrophages and neutrophils compared to control embryos. However, we found substantial changes in gene expression in these mutants, particularly in metabolic pathways, when compared with the heterozygote tlr2+/- control. At 4 days after Mm infection, the total bacterial burden and the presence of extracellular bacteria were higher in tlr2-/- larvae than in tlr2+/-, or tlr2+/+ larvae, whereas granuloma numbers were reduced, showing a function of Tlr2 in zebrafish host defense. RNAseq analysis of infected tlr2-/- versus tlr2+/- shows that the number of up-regulated and down-regulated genes in response to infection was greatly diminished in tlr2 mutants by at least 2 fold and 10 fold, respectively. Analysis of the transcriptome data and qPCR validation shows that Mm infection of tlr2 mutants leads to decreased mRNA levels of genes involved in inflammation and immune responses, including il1b, tnfb, cxcl11aa/ac, fosl1a, and cebpb. Furthermore, RNAseq analyses revealed that the expression of genes for Maf family transcription factors, vitamin D receptors, and Dicps proteins is altered in tlr2 mutants with or without infection. In addition, the data indicate a function of Tlr2 in the control of induction of cytokines and chemokines, such as the CXCR3-CXCL11 signaling axis. CONCLUSION: The transcriptome and infection burden analyses show a function of Tlr2 as a protective factor against mycobacteria. Transcriptome analysis revealed tlr2-specific pathways involved in Mm infection, which are related to responses to Mtb infection in human macrophages. Considering its dominant function in control of transcriptional processes that govern defense responses and metabolism, the TLR2 protein can be expected to be also of importance for other infectious diseases and interactions with the microbiome.
Asunto(s)
Enfermedades de los Peces/genética , Regulación del Desarrollo de la Expresión Génica , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Receptor Toll-Like 2/genética , Pez Cebra/genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/inmunología , Quimiocina CXCL11/genética , Quimiocina CXCL11/inmunología , Resistencia a la Enfermedad/genética , Embrión no Mamífero , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Larva/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Larva/microbiología , Linfotoxina-alfa/genética , Linfotoxina-alfa/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Factores de Transcripción Maf/genética , Factores de Transcripción Maf/inmunología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/inmunología , Mycobacterium marinum/patogenicidad , Neutrófilos/inmunología , Neutrófilos/microbiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/inmunología , Receptores CXCR3/genética , Receptores CXCR3/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/inmunología , Transcriptoma/inmunología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/inmunología , Pez Cebra/microbiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunologíaRESUMEN
Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections.
Asunto(s)
Pared Celular/metabolismo , Enterococcus faecalis/citología , Enterococcus faecalis/patogenicidad , Infecciones por Bacterias Grampositivas/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Pared Celular/genética , Enterococcus faecalis/enzimología , Enterococcus faecalis/genética , Humanos , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Virulencia , Pez Cebra/microbiologíaRESUMEN
Bacteria of the Burkholderia cepacia complex (Bcc) can cause devastating pulmonary infections in cystic fibrosis (CF) patients, yet the precise mechanisms underlying inflammation, recurrent exacerbations and transition from chronic stages to acute infection and septicemia are not known. Bcc bacteria are generally believed to have a predominant extracellular biofilm life style in infected CF lungs, similar to Pseudomonas aeruginosa, but this has been challenged by clinical observations which show Bcc bacteria predominantly in macrophages. More recently, Bcc bacteria have emerged in nosocomial infections of patients hospitalized for reasons unrelated to CF. Research has abundantly shown that Bcc bacteria can survive and replicate in mammalian cells in vitro, yet the importance of an intracellular life style during infection in humans is unknown. Here we studied the contribution of innate immune cell types to fatal pro-inflammatory infection caused by B. cenocepacia using zebrafish larvae. In strong contrast to the usual protective role for macrophages against microbes, our results show that these phagocytes significantly worsen disease outcome. We provide new insight that macrophages are critical for multiplication of B. cenocepacia in the host and for development of a fatal, pro-inflammatory response that partially depends on Il1-signalling. In contrast, neutrophils did not significantly contribute to disease outcome. In subcutaneous infections that are dominated by neutrophil-driven phagocytosis, the absence of a functional NADPH oxidase complex resulted in a small but measurably higher increase in bacterial growth suggesting the oxidative burst helps limit bacterial multiplication; however, neutrophils were unable to clear the bacteria. We suggest that paradigm-changing approaches are needed for development of novel antimicrobials to efficiently disarm intracellular bacteria of this group of highly persistent, opportunistic pathogens.
Asunto(s)
Burkholderia cenocepacia/aislamiento & purificación , Infección Hospitalaria/microbiología , Inflamación/microbiología , Macrófagos/microbiología , Neutrófilos/microbiología , Animales , Infecciones por Burkholderia/inmunología , Complejo Burkholderia cepacia/inmunología , Fibrosis Quística/complicaciones , Humanos , Pulmón/microbiología , Neutrófilos/inmunología , Fagocitosis/inmunología , Pseudomonas aeruginosa/fisiología , Infecciones del Sistema Respiratorio/microbiologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1006437.].
RESUMEN
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.
Asunto(s)
Presentación de Datos , Animales , Ontologías Biológicas , Carpas , Ratones , Terminología como Asunto , Interfaz Usuario-Computador , Pez CebraRESUMEN
Macrophages and neutrophils are the first responders to invading pathogens and contribute strongly to the host defense against intracellular pathogens. The collective interplay and dynamic interactions between these leukocytes are to a large extent not understood. In the present study, we have investigated their role using a combination of confocal laser-scanning and electron microscopy in a zebrafish model for tuberculosis, a local Mycobacterium marinum infection in the tissue of the larval tail fin. Our results show that neutrophils are efficient in phagocytosis of mycobacteria and that they contribute largely to their dissemination. Macrophages appear to play a major role in efferocytosis, phagocytosis of dead cells that contain bacterial content. Phagocytic cells with large bacterial aggregates are formed that can be extruded out of the tissue after cell death. Alternatively, these excessively infected cells can undergo necrosis leading to immediate recruitment of surrounding leukocytes and subsequent phagocytosis of released bacteria. Our data show that these necrotic burst events result in progression of the infection, whereas extrusion abates the infection.
Asunto(s)
Leucocitos/microbiología , Leucocitos/patología , Mycobacterium/fisiología , Fagocitosis , Pez Cebra/microbiología , Animales , Muerte Celular , Movimiento Celular , Humanos , Imagenología Tridimensional , Larva/microbiología , Macrófagos/microbiología , Macrófagos/ultraestructura , Modelos Biológicos , Mycobacterium/ultraestructura , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/patología , Neutrófilos/ultraestructuraRESUMEN
Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair.
Asunto(s)
Colágeno/fisiología , Metaloproteinasa 9 de la Matriz/fisiología , Cicatrización de Heridas/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Aletas de Animales/citología , Aletas de Animales/inmunología , Animales , Inflamación/genética , Inflamación/inmunología , Metaloproteinasa 9 de la Matriz/genética , Morfolinos , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
The imaging of intracellular pathogens inside host cells is complicated by the low resolution and sensitivity of fluorescence microscopy and by the lack of ultrastructural information to visualize the pathogens. Herein, we present a new method to visualize these pathogens during infection that circumvents these problems: by using a metabolic hijacking approach to bioorthogonally label the intracellular pathogen Salmonella Typhimurium and by using these bioorthogonal groups to introduce fluorophores compatible with stochastic optical reconstruction microscopy (STORM) and placing this in a correlative light electron microscopy (CLEM) workflow, the pathogen can be imaged within its host cell context Typhimurium with a resolution of 20â nm. This STORM-CLEM approach thus presents a new approach to understand these pathogens during infection.
RESUMEN
Ginseng Radix (Panax ginseng) is one of the most commonly used herbs worldwide for the treatment of inflammation-related diseases among others, supported by ancient historical records. Throughout this long history, the large-scale cultivation of ginseng created an increasing demand for long-term storage of the harvested plant material, accelerating the development of post-harvesting procedures. Dried white ginseng and processed (steamed) red ginseng are the products of the two most common traditional post-harvest processes. Although there are a significant number of reports on practice-based therapeutic applications of ginseng, science-based evidence is needed to support these uses. Using a reverse pharmacology approach in conjunction with high-throughput techniques and animal models may offer clear, simple paths for the elucidation of the mechanisms of activity of herbal medicines. Moreover, it could provide a new and more efficient method for the discovery of potential drug candidates. From this perspective, the different chemical compositions of white ginseng and red ginseng could very likely result in different interactions with signaling pathways of diverse biological responses. This paper provides an overview of white ginseng and red ginseng, mainly focusing on their chemical profile and immunomodulation activities. Synergistic effects of ginseng herbal drugs with combinations of other traditional herbal drugs or with synthetic drugs were reviewed. The use of the zebrafish model for bioactivity testing greatly improves the prospects for future ginseng research.
Asunto(s)
Sinergismo Farmacológico , Ginsenósidos/farmacología , Inmunomodulación/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Animales , Ginsenósidos/química , Humanos , Extractos Vegetales/química , Raíces de Plantas/química , Plantas Medicinales , Pez CebraRESUMEN
Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.
Asunto(s)
Rutas de Resultados Adversos , Ecotoxicología/métodos , Animales , Ecotoxicología/historia , Historia del Siglo XXI , Humanos , Ratones Endogámicos C57BL , Control de Calidad , Medición de Riesgo/métodos , Biología de Sistemas , Toxicocinética , Compuestos de Vinilo/efectos adversosRESUMEN
Endoderm and mesoderm are both formed upon activation of Nodal signaling but how endoderm differentiates from mesoderm is still poorly explored. The sox-related gene casanova (sox32) acts downstream of the Nodal signal, is essential for endoderm development and requires the co-factor Pou2 (Pou5f1, Oct3, Oct4) in this process. Conversely, BMP signals have been shown to inhibit endoderm development by an as yet unexplained mechanism. In a search for Casanova regulators in zebrafish, we identified two of its binding partners as the transcription factors Pou2 and Vox, a member of the Vent group of proteins also involved in the patterning of the gastrula. In overexpression studies we show that vox and/or Vent group genes inhibit the capacity of Casanova to induce endoderm, even in the presence of its co-factor Pou2, and that Vox acts as a repressor in this process. We further show that vox, but not other members of the Vent group, is essential for defining the proper endodermal domain size at gastrulation. In this process, vox acts downstream of BMPs. Cell fate analysis further shows that Vox plays a key role downstream of BMP signals in regulating the capacity of Nodal to induce endoderm versus mesoderm by modulating the activity of the Casanova/Pou2 regulatory system.
Asunto(s)
Endodermo/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Factores de Transcripción SOX/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Regulación hacia Abajo/genética , Embrión no Mamífero , Endodermo/crecimiento & desarrollo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Ligandos de Señalización Nodal/genética , Ligandos de Señalización Nodal/metabolismo , Ligandos de Señalización Nodal/fisiología , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas Represoras/química , Proteínas Represoras/genética , Factores de Transcripción SOX/fisiología , Eliminación de Secuencia , Distribución Tisular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genéticaRESUMEN
Fruits are complex plant structures that nurture seeds and facilitate their dispersal. The Arabidopsis fruit is termed silique. It develops from the gynoecium, which has a stigma, a style, an ovary containing the ovules, and a gynophore. Externally, the ovary consists of two valves, and their margins lay adjacent to the replum, which is connected to the septum that internally divides the ovary. In this work we describe the role for the zinc-finger transcription factor NO TRANSMITTING TRACT (NTT) in replum development. NTT loss of function leads to reduced replum width and cell number, whereas increased expression promotes replum enlargement. NTT activates the homeobox gene BP, which, together with RPL, is important for replum development. In addition, the NTT protein is able to bind the BP promoter in yeast, and when this binding region is not present, NTT fails to activate BP in the replum. Furthermore, NTT interacts with itself and different proteins involved in fruit development: RPL, STM, FUL, SHP1 and SHP2 in yeast and in planta. Moreover, its genetic interactions provide further evidence about its biological relevance in replum development.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frutas/citología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Genes Reporteros , Modelos Biológicos , Mutación , Especificidad de Órganos , Fenotipo , Regiones Promotoras Genéticas/genética , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Dedos de ZincRESUMEN
BACKGROUND: Although the responses to many pathogen associated molecular patterns (PAMPs) in cell cultures and extracted organs are well characterized, there is little known of transcriptome responses to PAMPs in whole organisms. To characterize this in detail, we have performed RNAseq analysis of responses of zebrafish embryos to injection of PAMPs in the caudal vein at one hour after exposure. We have compared two ligands that in mammals have been shown to specifically activate the TLR2 and TLR5 receptors: Pam3CSK4 and flagellin, respectively. RESULTS: We identified a group of 80 common genes that respond with high stringency selection to stimulations with both PAMPs, which included several well-known immune marker genes such as il1b and tnfa. Surprisingly, we also identified sets of 48 and 42 genes that specifically respond to either Pam3CSK4 or flagellin, respectively, after a comparative filtering approach. Remarkably, in the Pam3CSK4 specific set, there was a set of transcription factors with more than 2 fold-change, as confirmed by qPCR analyses, including cebpb, fosb, nr4a1 and egr3. We also showed that the regulation of the Pam3CSK4 and flagellin specifically responding sets is inhibited by knockdown of tlr2 or tlr5, respectively. CONCLUSIONS: Our studies show that Pam3CSK4 and flagellin can stimulate the Tlr2 and Tlr5 signaling pathways leading to common and specific responses in the zebrafish embryo system.