Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(16-17): 6489-6497, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34417847

RESUMEN

There is an increased interest in finding remedies for contamination in low permeability and advection-limited aquifers. A technology applicable at these sites, electrokinetic-enhanced bioremediation (EK-BIO), combines traditional bioremediation and electrokinetic technologies by applying direct current to transport bioremediation amendments and microbes in situ. The effect of this technology on the native soil microbial community has only been previously investigated at the bench scale. This research explored the influence of EK-BIO on subsurface microbial communities at a field-scale demonstration site. The results showed that, similar to the findings in laboratory studies, alpha diversity decreased and beta diversity differed temporally, based on treatment phase. Enrichments in specific taxa were linked to the bioaugmentation culture and electron donor. Overall, findings from our study, one of the first field-scale investigations of the influence of electrokinetic bioremediation on subsurface microbial communities, are very similar to bench-scale studies on the topic, suggesting good correlation between laboratory and field experiments on EK-BIO and showing that lessons learned at the benchtop are important and relevant to field-scale implementation. KEY POINTS: • Microbial community analysis of field samples validates laboratory study results • Bioaugmentation cultures and electron donors have largest effect on microbial community.


Asunto(s)
Microbiota , Contaminantes del Suelo , Tetracloroetileno , Biodegradación Ambiental , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
2.
Chemosphere ; 303(Pt 1): 134877, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35577129

RESUMEN

Hydrogen (H2) is a crucial electron donor for many processes in the environment including nitrate-, sulfate- and, iron-reduction, homoacetogenesis, and methanogenesis, and is a major determinant of microbial competition and metabolic pathways in groundwater, sediments, and soils. Despite the importance of H2 for many microbial processes in the environment, the total H2 consuming capacity (or H2 demand) of soils is generally unknown. Using soil microcosms with added H2, the aims of this study were 1) to measure the H2 demand of geochemically diverse soils and 2) to define the processes leading to this demand. Study results documented a large range of H2 demand in soil (0.034-1.2 millielectron equivalents H2 g-1 soil). The measured H2 demand greatly exceeded the theoretical demand predicted based on measured concentrations of common electron acceptors initially present in a library of 15 soils. While methanogenesis accounted for the largest fraction of H2 demand, humic acid reduction and acetogenesis were also significant contributing H2-consuming processes. Much of the H2 demand could be attributed to CO2 produced during incubation from fermentation and/or acetoclastic methanogenesis. The soil initial total organic carbon showed the strongest correlation to H2 demand. Besides external additions, H2 was likely generated or cycled in the microcosms. Apart from fermentative H2 production, carboxylate elongation to produce C4-C7 fatty acids may have accounted for additional H2 production in these soils. Many of these processes, especially the organic carbon contribution is underestimated in microbial models for H2 consumption in natural soil ecosystems or during bioremediation of contaminants in soils.


Asunto(s)
Carbono , Suelo , Anaerobiosis , Ecosistema , Hidrógeno , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA