Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34006641

RESUMEN

Familial mutations of the protein kinase A (PKA) R1α regulatory subunit lead to a generalized predisposition for a wide range of tumors, from pituitary adenomas to pancreatic and liver cancers, commonly referred to as Carney complex (CNC). CNC mutations are known to cause overactivation of PKA, but the molecular mechanisms underlying such kinase overactivity are not fully understood in the context of the canonical cAMP-dependent activation of PKA. Here, we show that oligomerization-induced sequestration of R1α from the catalytic subunit of PKA (C) is a viable mechanism of PKA activation that can explain the CNC phenotype. Our investigations focus on comparative analyses at the level of structure, unfolding, aggregation, and kinase inhibition profiles of wild-type (wt) PKA R1α, the A211D and G287W CNC mutants, as well as the cognate acrodysostosis type 1 (ACRDYS1) mutations A211T and G287E. The latter exhibit a phenotype opposite to CNC with suboptimal PKA activation compared with wt. Overall, our results show that CNC mutations not only perturb the classical cAMP-dependent allosteric activation pathway of PKA, but also amplify significantly more than the cognate ACRDYS1 mutations nonclassical and previously unappreciated activation pathways, such as oligomerization-induced losses of the PKA R1α inhibitory function.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , AMP Cíclico/química , Mutación , Subunidades de Proteína/química , Regulación Alostérica , Animales , Sitios de Unión , Complejo de Carney/enzimología , Complejo de Carney/genética , Complejo de Carney/patología , Bovinos , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Disostosis/enzimología , Disostosis/genética , Disostosis/patología , Activación Enzimática , Expresión Génica , Humanos , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Cinética , Modelos Moleculares , Osteocondrodisplasias/enzimología , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
2.
J Biol Chem ; 298(3): 101691, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143840

RESUMEN

Malaria is a life-threatening infectious disease primarily caused by the Plasmodium falciparum parasite. The increasing resistance to current antimalarial drugs and their side effects has led to an urgent need for novel malaria drug targets, such as the P. falciparum cGMP-dependent protein kinase (pfPKG). However, PKG plays an essential regulatory role also in the human host. Human cGMP-dependent protein kinase (hPKG) and pfPKG are controlled by structurally homologous cGMP-binding domains (CBDs). Here, we show that despite the structural similarities between the essential CBDs in pfPKG and hPKG, their respective allosteric networks differ significantly. Through comparative analyses of chemical shift covariance analyses, molecular dynamics simulations, and backbone internal dynamics measurements, we found that conserved allosteric elements within the essential CBDs are wired differently in pfPKG and hPKG to implement cGMP-dependent kinase activation. Such pfPKG versus hPKG rewiring of allosteric networks was unexpected because of the structural similarity between the two essential CBDs. Yet, such finding provides crucial information on which elements to target for selective inhibition of pfPKG versus hPKG, which may potentially reduce undesired side effects in malaria treatments.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Malaria Falciparum , Plasmodium falciparum , Regulación Alostérica , Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Humanos , Malaria Falciparum/enzimología , Malaria Falciparum/parasitología , Simulación de Dinámica Molecular , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
3.
J Biol Chem ; 298(2): 101502, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929173

RESUMEN

The aberrant self-assembly of intrinsically disordered proteins (IDPs) into soluble oligomers and their interactions with biological membranes underlie the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease. Catechins have emerged as useful tools to reduce the toxicity of IDP oligomers by modulating their interactions with membranes. However, the structural determinants of catechin binding to IDP oligomers and membranes remain largely elusive. Here, we assemble a catechin library by combining several naturally occurring chemical modifications and, using a coupled NMR-statistical approach, we map at atomic resolution the interactions of such library with the Alzheimer's-associated amyloid-beta (Aß) oligomers and model membranes. Our results reveal multiple catechin affinity drivers and show that the combination of affinity-reducing covalent changes may lead to unexpected net gains in affinity. Interestingly, we find that the positive cooperativity is more prevalent for Aß oligomers than membrane binding, and that the determinants underlying catechin recognition by membranes are markedly different from those dissected for Aß oligomers. Notably, we find that the unanticipated positive cooperativity arises from the critical regulatory role of the gallate catechin moiety, which recruits previously disengaged substituents into the binding interface and leads to an overall greater compaction of the receptor-bound conformation. Overall, the previously elusive structural attributes mapped here provide an unprecedented foundation to establish structure-activity relationships of catechins.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Catequina , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Catequina/química , Catequina/metabolismo , Lípidos , Relación Estructura-Actividad , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo
4.
J Chem Phys ; 158(12): 121101, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003757

RESUMEN

Protein kinase G (PKG) is an essential regulator of eukaryotic cyclic guanosine monophosphate (cGMP)-dependent intracellular signaling, controlling pathways that are often distinct from those regulated by cyclic adenosine monophosphate (cAMP). Specifically, the C-terminal cyclic-nucleotide-binding domain (CNB-B) of PKG has emerged as a critical module to control allostery and cGMP-selectivity in PKG. While key contributions to the cGMP-versus-cAMP selectivity of CNB-B were previously assessed, only limited knowledge is currently available on how cyclic nucleotide binding rewires the network of hydrogen bonds in CNB-B, and how such rewiring contributes to allostery and cGMP selectivity. To address this gap, we extend the comparative analysis of apo, cAMP- and cGMP-bound CNB-B to H/D fractionation factors (FFs), which are well-suited for assessing backbone hydrogen-bond strengths within proteins. Apo-vs-bound comparisons inform of perturbations arising from both binding and allostery, while cGMP-bound vs cAMP-bound comparisons inform of perturbations that are purely allosteric. The comparative FF analyses of the bound states revealed mixed patterns of hydrogen-bond strengthening and weakening, pointing to inherent frustration, whereby not all hydrogen bonds can be simultaneously stabilized. Interestingly, contrary to expectations, these patterns include a weakening of hydrogen bonds not only within critical recognition and allosteric elements of CNB-B, but also within elements known to undergo rigid-body movement upon cyclic nucleotide binding. These results suggest that frustration may contribute to the reversibility of allosteric conformational shifts by avoiding over-rigidification that may otherwise trap CNB-B in its active state. Considering that PKG CNB-B serves as a prototype for allosteric conformational switches, similar concepts may be applicable to allosteric domains in general.


Asunto(s)
AMP Cíclico , Nucleótidos Cíclicos , Nucleótidos Cíclicos/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Unión Proteica , Hidrógeno
5.
Biochem J ; 479(7): 825-838, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35403669

RESUMEN

Allosteric pluripotency arises when the functional response of an allosteric receptor to an allosteric stimulus depends on additional allosteric modulators. Here, we discuss allosteric pluripotency as observed in the prototypical Protein Kinase A (PKA) as well as in other signaling systems, from typical multidomain signaling proteins to bacterial enzymes. We identify key drivers of pluripotent allostery and illustrate how hypothesizing allosteric pluripotency may solve apparent discrepancies currently present in the literature regarding the dual nature of known allosteric modulators. We also outline the implications of allosteric pluripotency for cellular signaling and allosteric drug design, and analyze the challenges and opportunities opened by the pluripotent nature of allostery.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Diseño de Fármacos , Regulación Alostérica/fisiología , Sitio Alostérico , Transducción de Señal
6.
Biophys J ; 121(11): 2035-2045, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35538664

RESUMEN

Allosteric regulation is essential to control biological function. In addition, allosteric sites offer a promising venue for selective drug targeting. However, accurate mapping of allosteric sites remains challenging since allostery relies on often subtle, yet functionally relevant, structural and dynamical changes. A viable approach proposed to overcome such challenge is chemical shift covariance analysis (CHESCA). Although CHESCA offers an exhaustive map of allosteric networks, it is critical to define the core allosteric sites to be prioritized in subsequent functional studies or in the design of allosteric drugs. Here, we propose two new CHESCA-based methodologies, called temperature CHESCA (T-CHESCA) and CLASS-CHESCA, aimed at narrowing down allosteric maps to the core allosteric residues. Both T- and CLASS-CHESCAs rely on the invariance of core inter-residue correlations to changes in the chemical shifts of the active and inactive conformations interconverting in fast exchange. In T-CHESCA the chemical shifts of such states are modulated through temperature changes, while in CLASS-CHESCA through variations in the spin-active nuclei involved in pairwise correlations. T- and CLASS-CHESCAs, as well as complete-linkage CHESCA, were applied to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC), which serves as a prototypical allosteric switch. Residues consistently identified by the three CHESCA methods were found in previously identified EPAC allosteric core sites. Hence, T-, CLASS-, and CL-CHESCA provide a toolset to establish allosteric site hierarchy and triage allosteric sites to be further analyzed by mutations and functional assays. Furthermore, the core allosteric networks selectively revealed through T- and CLASS-CHESCA are expected to facilitate the mechanistic understanding of disease-related mutations and the design of selective allosteric modulators.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Regulación Alostérica , Sitio Alostérico , Factores de Intercambio de Guanina Nucleótido/metabolismo , Conformación Molecular , Temperatura
7.
Bioinformatics ; 37(8): 1176-1177, 2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32926121

RESUMEN

MOTIVATION: Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. AVAILABILITY AND IMPLEMENTATION: CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.


Asunto(s)
Análisis de Datos , Programas Informáticos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Proteínas
8.
J Biol Chem ; 295(25): 8480-8491, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32317283

RESUMEN

Most malaria deaths are caused by the protozoan parasite Plasmodium falciparum Its life cycle is regulated by a cGMP-dependent protein kinase (PfPKG), whose inhibition is a promising antimalaria strategy. Allosteric kinase inhibitors, such as cGMP analogs, offer enhanced selectivity relative to competitive kinase inhibitors. However, the mechanisms underlying allosteric PfPKG inhibition are incompletely understood. Here, we show that 8-NBD-cGMP is an effective PfPKG antagonist. Using comparative NMR analyses of a key regulatory domain, PfD, in its apo, cGMP-bound, and cGMP analog-bound states, we elucidated its inhibition mechanism of action. Using NMR chemical shift analyses, molecular dynamics simulations, and site-directed mutagenesis, we show that 8-NBD-cGMP inhibits PfPKG not simply by reverting a two-state active versus inactive equilibrium, but by sampling also a distinct inactive "mixed" intermediate. Surface plasmon resonance indicates that the ability to stabilize a mixed intermediate provides a means to effectively inhibit PfPKG, without losing affinity for the cGMP analog. Our proposed model may facilitate the rational design of PfPKG-selective inhibitors for improved management of malaria.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Regulación Alostérica , Sitios de Unión , GMP Cíclico/análogos & derivados , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Plasmodium falciparum/metabolismo , Dominios Proteicos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Resonancia por Plasmón de Superficie
9.
J Am Chem Soc ; 143(12): 4668-4679, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33733753

RESUMEN

Soluble oligomers formed by amyloidogenic intrinsically disordered proteins are some of the most cytotoxic species linked to neurodegeneration. Due to the transient and heterogeneous nature of such oligomeric intermediates, the underlying self-association events often remain elusive. NMR relaxation measurements sensitive to zero-frequency spectral densities (J(0)), such as the 15N - R2 rates, are ideally suited to map sites of self-association at atomic resolution without the need of exogenous labels. Such experiments exploit the dynamic exchange between NMR visible monomers and slowly tumbling oligomers. However,15N - R2 rates are also sensitive to intrinsic monomer dynamics, and it is often difficult to discern these contributions from those arising from exchange with oligomers. Another challenge pertains to defining a hierarchy of self-association. Here, using the archetypical amyloidogenic protein alpha synuclein (αS), we show that the temperature-dependence of 15N - R2 effectively identifies self-association sites with reduced bias from internal dynamics. The key signature of the residues involved in self-association is a nonlinear temperature-dependence of 15N - R2 with a positive ΔR2/ΔT slope. These two hallmarks are systematically probed through a thermal R2 correlation matrix, from which the network of residues involved in self-association as well as the hierarchy of αS self-association sites is extracted through agglomerative clustering. We find that aggregation is initiated by residues within the NAC region that is solvent inaccessible in αS fibrils and eventually extends to the N-terminal segment harboring familial PD mutations. These hierarchical self-association maps help dissect the essential drivers of oligomerization and reveal how amyloid inhibitors affect oligomer formation.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Temperatura , alfa-Sinucleína/análisis , Humanos , Proteínas Intrínsecamente Desordenadas/síntesis química , Modelos Moleculares
10.
Biophys J ; 119(6): 1135-1146, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882185

RESUMEN

Quantifying chemical substituent contributions to ligand-binding free energies is challenging due to nonadditive effects. Protein allostery is a frequent cause of nonadditivity, but the underlying allosteric mechanisms often remain elusive. Here, we propose a general NMR-based approach to elucidate such mechanisms and we apply it to the HCN4 ion channel, whose cAMP-binding domain is an archetypal conformational switch. Using NMR, we show that nonadditivity arises not only from concerted conformational transitions, but also from conformer-specific effects, such as steric frustration. Our results explain how affinity-reducing functional groups may lead to affinity gains if combined. Surprisingly, our approach also reveals that nonadditivity depends markedly on the receptor conformation. It is negligible for the inhibited state but highly significant for the active state, opening new opportunities to tune potency and agonism of allosteric effectors.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Regulación Alostérica , Entropía , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ligandos , Conformación Molecular , Unión Proteica , Conformación Proteica
11.
J Am Chem Soc ; 142(21): 9686-9699, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32383602

RESUMEN

Alpha synuclein (αS) oligomers are a key component of Lewy bodies implicated in Parkinson's disease (PD). Although primarily intracellular, extracellular αS exocytosed from neurons also contributes to PD pathogenesis through a prion-like transmission mechanism. Here, we show at progressive degrees of resolution that the most abundantly expressed extracellular protein, human serum albumin (HSA), inhibits αS oligomer (αSn) toxicity through a three-pronged mechanism. First, endogenous HSA targets αSn with sub-µM affinity via solvent-exposed hydrophobic sites, breaking the catalytic cycle that promotes αS self-association. Second, HSA remodels αS oligomers and high-MW fibrils into chimeric intermediates with reduced toxicity. Third, HSA unexpectedly suppresses membrane interactions with the N-terminal and central αS regions. Overall, our findings suggest that the extracellular proteostasis network may regulate αS cell-to-cell transmission not only by reducing the populations of membrane-binding competent αS oligomers but possibly also by shielding the membrane interface from residual toxic species.


Asunto(s)
Chaperonas Moleculares/metabolismo , Albúmina Sérica Humana/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/química , Albúmina Sérica Humana/química , alfa-Sinucleína/química
12.
Molecules ; 25(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781559

RESUMEN

Protein misfolding as well as the subsequent self-association and deposition of amyloid aggregates is implicated in the progression of several neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Modulators of amyloidogenic aggregation serve as essential tools to dissect the underlying molecular mechanisms and may offer insight on potential therapeutic solutions. These modulators include green tea catechins, which are potent inhibitors of amyloid aggregation. Although catechins often exhibit poor pharmacokinetic properties and bioavailability, they are still essential tools for identifying the drivers of amyloid aggregation and for developing other aggregation modulators through structural mimicry. As an illustration of such strategies, here we review how catechins have been used to map the toxic surfaces of oligomeric amyloid-like species and develop catechin-based phenolic compounds with enhanced anti-amyloid activity.


Asunto(s)
Catequina/farmacología , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores/farmacología , Catequina/uso terapéutico , Humanos , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/uso terapéutico
13.
Methods ; 148: 19-27, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29857190

RESUMEN

Elucidating the molecular mechanism of disease-related mutations (DRMs) is a critical first step towards understanding the etiology of genetic disorders. DRMs often modulate biological function by altering the free-energy landscape (FEL) of the protein associated with the mutated gene. FELs typically include ground, as well as excited, yet accessible and functionally relevant, states and DRMs may perturb both the thermodynamics and kinetics of the ground vs. excited and apo vs. holo transitions. NMR is ideally suited to map at atomic-resolution these DRM-induced FEL perturbations. Here, we discuss NMR methods that can elucidate how DRMs remodel regulatory FELs by focusing on a simple, but prototypical, four-state allosteric FEL model. The approaches include the CHEmical Shift Projection Analysis, NMR spin relaxation measurements, and NMR measurements of effector-binding thermodynamics and kinetics. Together, these complementary NMR measurements provide a valuable picture of how DRMs modulate distinct FEL attributes that are critical for dissecting the molecular mechanisms underlying pathological phenotypes.


Asunto(s)
Mutación/genética , Resonancia Magnética Nuclear Biomolecular/métodos , Termodinámica
14.
J Biol Chem ; 292(15): 6414-6428, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28174302

RESUMEN

The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.


Asunto(s)
AMP Cíclico/química , AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Mutación Missense , Canales de Potasio/química , Canales de Potasio/metabolismo , Síndrome del Seno Enfermo/congénito , Sustitución de Aminoácidos , AMP Cíclico/genética , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Proteínas Musculares/genética , Canales de Potasio/genética , Dominios Proteicos , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/metabolismo , Relación Estructura-Actividad
15.
J Biol Chem ; 292(42): 17158-17168, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28798235

RESUMEN

Self-association of amyloid ß (Aß) peptides is a hallmark of Alzheimer's disease and serves as a general prototype for amyloid formation. A key endogenous inhibitor of Aß self-association is human serum albumin (HSA), which binds ∼90% of plasma Aß. However, the exact molecular mechanism by which HSA binds Aß monomers and protofibrils is not fully understood. Here, using dark-state exchange saturation transfer NMR and relaxation experiments complemented by morphological characterization, we mapped the HSA-Aß interactions at atomic resolution by examining the effects of HSA on Aß monomers and soluble high-molecular weight oligomeric protofibrils. We found that HSA binds both monomeric and protofibrillar Aß, but the affinity of HSA for Aß monomers is lower than for Aß protofibrils (Kd values are submillimolar rather than micromolar) yet physiologically relevant because of the ∼0.6-0.7 mm plasma HSA concentration. In both Aß protofibrils and monomers, HSA targets key Aß self-recognition sites spanning the ß strands found in cross-ß protofibril structures, leading to a net switch from direct to tethered contacts between the monomeric Aß and the protofibril surface. These HSA-Aß interactions are isoform-specific, because the HSA affinity of Aß monomers is lower for Aß(1-42) than for Aß(1-40). In addition, the HSA-induced perturbations of the monomer/protofibrils pseudo-equilibrium extend to the C-terminal residues in the Aß(1-42) isoform but not in Aß(1-40). These results provide an unprecedented view of how albumin interacts with Aß and illustrate the potential of dark-state exchange saturation transfer NMR in mapping the interactions between amyloid-inhibitory proteins and amyloidogenic peptides.


Asunto(s)
Péptidos beta-Amiloides , Modelos Moleculares , Fragmentos de Péptidos , Albúmina Sérica/química , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
16.
J Am Chem Soc ; 140(30): 9624-9637, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016089

RESUMEN

Classical uncompetitive inhibitors are potent pharmacological modulators of enzyme function. Since they selectively target enzyme-substrate complexes (E:S), their inhibitory potency is amplified by increasing substrate concentrations. Recently, an unconventional uncompetitive inhibitor, called CE3F4R, was discovered for the exchange protein activated by cAMP isoform 1 (EPAC1). Unlike conventional uncompetitive inhibitors, CE3F4R is uncompetitive with respect to an allosteric effector, cAMP, as opposed to the substrate (i.e., CE3F4R targets the E:cAMP rather than the E:S complex). However, the mechanism of CE3F4R as an uncompetitive inhibitor is currently unknown. Here, we elucidate the mechanism of CE3F4R's action using NMR spectroscopy. Due to limited solubility and line broadening, which pose major challenges for traditional structural determination approaches, we resorted to a combination of protein- and ligand-based NMR experiments to comparatively analyze EPAC mutations, inhibitor analogs, and cyclic nucleotide derivatives that trap EPAC at different stages of activation. We discovered that CE3F4R binds within the EPAC cAMP-binding domain (CBD) at a subdomain interface distinct from the cAMP binding site, acting as a wedge that stabilizes a cAMP-bound mixed-intermediate. The mixed-intermediate includes attributes of both the apo/inactive and cAMP-bound/active states. In particular, the intermediate targeted by CE3F4R traps a CBD's hinge helix in its inactive conformation, locking EPAC into a closed domain topology that restricts substrate access to the catalytic domain. The proposed mechanism of action also explains the isoform selectivity of CE3F4R in terms of a single EPAC1 versus EPAC2 amino acid difference that destabilizes the active conformation of the hinge helix.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/agonistas , Factores de Intercambio de Guanina Nucleótido/metabolismo , Quinolinas/metabolismo , Regulación Alostérica , Sitio Alostérico , Dominio Catalítico , AMP Cíclico/química , Ligandos , Modelos Químicos , Conformación Molecular , Unión Proteica , Espectroscopía de Protones por Resonancia Magnética , Quinolinas/química , Quinolinas/farmacología
17.
Immunol Cell Biol ; 96(9): 922-934, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29617041

RESUMEN

Nucleic acids are potential pathogen-associated or danger-associated molecular patterns that modulate immune responses and the development of autoimmune disorders. Class A scavenger receptors (SR-As) are a diverse group of pattern recognition receptors that recognize a variety of polyanionic ligands including nucleic acids. While SR-As are important for the recognition and internalization of extracellular dsRNA, little is known about extracellular DNA, despite its association with chronic infections and autoimmune disorders. In this study, we investigated the specificity of and requirement for SR-As in binding and internalizing different species, sequences and lengths of nucleic acids. We purified recombinant coiled-coil/collagenous and scavenger receptor cysteine-rich (SRCR) domains that have been implicated as potential ligand-binding domains. We detected a direct interaction of RNA and DNA species with the coiled-coil/collagenous domain, but not the SRCR domain. Despite the presence of additional surface receptors that bind nucleic acids, SR-As were found to be sufficient for nucleic acid binding and uptake in A549 human lung epithelial cells. Moreover, these findings suggest that the coiled-coil/collagenous domain of SR-As is sufficient to bind nucleic acids independent of species, sequence or length.


Asunto(s)
Ácidos Nucleicos/metabolismo , ARN Bicatenario/metabolismo , Receptores Depuradores de Clase A/metabolismo , Internalización del Virus , Células A549 , Secuencia de Aminoácidos , Humanos , Ácidos Nucleicos/inmunología , Receptores de Reconocimiento de Patrones , Receptores Depuradores de Clase A/inmunología
18.
PLoS Biol ; 13(11): e1002305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618408

RESUMEN

Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a "gatekeeper" domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91-379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , AMP Cíclico/química , Modelos Moleculares , Sustitución de Aminoácidos , Animales , Sitios de Unión , Bovinos , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transferencia de Energía , Activación Enzimática , Eliminación de Gen , Ratones , Mutación , Fragmentos de Péptidos , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Repetidas en Tándem
19.
Chem Rev ; 116(11): 6267-304, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27111288

RESUMEN

The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.

20.
J Am Chem Soc ; 139(39): 13720-13734, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28841302

RESUMEN

(-)-Epigallocatechin gallate (EGCG) effectively reduces the cytotoxicity of the Alzheimer's disease ß-amyloid peptide (Aß) by remodeling seeding-competent Aß oligomers into off-pathway seeding-incompetent Aß assemblies. However, the mechanism of EGCG-induced remodeling is not fully understood. Here we combine 15N and 1H dark-state exchange saturation transfer (DEST), relaxation, and chemical shift projection NMR analyses with fluorescence, dynamic light scattering, and electron microscopy to elucidate how EGCG remodels Aß oligomers. We show that the remodeling adheres to a Hill-Scatchard model whereby the Aß(1-40) self-association occurs cooperatively and generates Aß(1-40) oligomers with multiple independent binding sites for EGCG with a Kd ∼10-fold lower than that for the Aß(1-40) monomers. Upon binding to EGCG, the Aß(1-40) oligomers become less solvent exposed, and the ß-regions, which are involved in direct monomer-protofibril contacts in the absence of EGCG, undergo a direct-to-tethered contact shift. This switch toward less engaged monomer-protofibril contacts explains the seeding incompetency observed upon EGCG remodeling and suggests that EGCG interferes with secondary nucleation events known to generate toxic Aß assemblies. Unexpectedly, the N-terminal residues experience an opposite EGCG-induced shift from tethered to direct contacts, explaining why EGCG remodeling occurs without release of Aß(1-40) monomers. We also show that upon binding Aß(1-40) oligomers the relative positions of the EGCG B and D rings change with respect to that of ring A. These distinct structural changes occurring in both Aß(1-40) oligomers and EGCG during remodeling offer a foundation for understanding the molecular mechanism of EGCG as a neurotoxicity inhibitor. Furthermore, the results reported here illustrate the effectiveness of DEST-based NMR approaches in investigating the mechanism of low-molecular-weight amyloid inhibitors.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Catequina/análogos & derivados , Péptidos beta-Amiloides/metabolismo , Catequina/química , Catequina/farmacología , Modelos Moleculares , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA