Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(5): 1383-1401.e19, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33159858

RESUMEN

Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno/genética , Análisis de la Célula Individual , Animales , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Efecto Espectador , Diferenciación Celular , Proliferación Celular , Citocinas/metabolismo , Ebolavirus/genética , Chaperón BiP del Retículo Endoplásmico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Regulación Viral de la Expresión Génica , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Antígenos de Histocompatibilidad Clase II/metabolismo , Interferones/genética , Interferones/metabolismo , Macaca mulatta , Macrófagos/metabolismo , Monocitos/metabolismo , Mielopoyesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Transcriptoma/genética
2.
Nucleic Acids Res ; 52(6): 2821-2835, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38348970

RESUMEN

A key attribute of some long noncoding RNAs (lncRNAs) is their ability to regulate expression of neighbouring genes in cis. However, such 'cis-lncRNAs' are presently defined using ad hoc criteria that, we show, are prone to false-positive predictions. The resulting lack of cis-lncRNA catalogues hinders our understanding of their extent, characteristics and mechanisms. Here, we introduce TransCistor, a framework for defining and identifying cis-lncRNAs based on enrichment of targets amongst proximal genes. TransCistor's simple and conservative statistical models are compatible with functionally defined target gene maps generated by existing and future technologies. Using transcriptome-wide perturbation experiments for 268 human and 134 mouse lncRNAs, we provide the first large-scale survey of cis-lncRNAs. Known cis-lncRNAs are correctly identified, including XIST, LINC00240 and UMLILO, and predictions are consistent across analysis methods, perturbation types and independent experiments. We detect cis-activity in a minority of lncRNAs, primarily involving activators over repressors. Cis-lncRNAs are detected by both RNA interference and antisense oligonucleotide perturbations. Mechanistically, cis-lncRNA transcripts are observed to physically associate with their target genes and are weakly enriched with enhancer elements. In summary, TransCistor establishes a quantitative foundation for cis-lncRNAs, opening a path to elucidating their molecular mechanisms and biological significance.


Asunto(s)
Biología Computacional , Técnicas Genéticas , ARN Largo no Codificante , Animales , Humanos , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/aislamiento & purificación , Factores de Transcripción/genética , Transcriptoma , Programas Informáticos/normas , Biología Computacional/métodos
3.
Mol Cell ; 62(5): 657-64, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259198

RESUMEN

There is growing evidence that transcription and nuclear organization are tightly linked. Yet, whether transcription of thousands of long noncoding RNAs (lncRNAs) could play a role in this packaging process remains elusive. Although some lncRNAs have been found to have clear roles in nuclear architecture (e.g., FIRRE, NEAT1, XIST, and others), the vast majority remain poorly understood. In this Perspective, we highlight how the act of transcription can affect nuclear architecture. We synthesize several recent findings into a proposed model where the transcription of lncRNAs can serve as guide-posts for shaping genome organization. This model is similar to the game "cat's cradle," where the shape of a string is successively changed by opening up new sites for finger placement. Analogously, transcription of lncRNAs could serve as "grip holds" for nuclear proteins to pull the genome into new positions. This model could explain general lncRNA properties such as low abundance and tissue specificity. Overall, we propose a general framework for how the act of lncRNA transcription could play a role in organizing the 3D genome.


Asunto(s)
Núcleo Celular/metabolismo , Genoma Humano , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transcripción Genética , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/ultraestructura , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Sitios Genéticos , Humanos , Modelos Genéticos , Proteínas Nucleares/biosíntesis , ARN Largo no Codificante/biosíntesis , ARN Mensajero/biosíntesis
4.
Genome Res ; 29(3): 344-355, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30683753

RESUMEN

Transcription initiates at both coding and noncoding genomic elements, including mRNA and long noncoding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has a different expression profile with lncRNAs and eRNAs being the most tissue specific. How these complex differences in expression profiles and tissue specificities are encoded in a single DNA sequence remains unresolved. Here, we address this question using computational approaches and massively parallel reporter assays (MPRA) surveying hundreds of promoters and enhancers. We find that both divergent lncRNA and mRNA core promoters have higher capacities to drive transcription than nondivergent lncRNA and mRNA core promoters, respectively. Conversely, intergenic lncRNAs (lincRNAs) and eRNAs have lower capacities to drive transcription and are more tissue specific than divergent genes. This higher tissue specificity is strongly associated with having less complex transcription factor (TF) motif profiles at the core promoter. We experimentally validated these findings by testing both engineered single-nucleotide deletions and human single-nucleotide polymorphisms (SNPs) in MPRA. In both cases, we observe that single nucleotides associated with many motifs are important drivers of promoter activity. Thus, we suggest that high TF motif density serves as a robust mechanism to increase promoter activity at the expense of tissue specificity. Moreover, we find that 22% of common SNPs in core promoter regions have significant regulatory effects. Collectively, our findings show that high TF motif density provides redundancy and increases promoter activity at the expense of tissue specificity, suggesting that specificity of expression may be regulated by simplicity of motif usage.


Asunto(s)
Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Genoma Humano , Humanos , Especificidad de Órganos , Polimorfismo de Nucleótido Simple
5.
Genome Res ; 27(1): 27-37, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927715

RESUMEN

While long intergenic noncoding RNAs (lincRNAs) and mRNAs share similar biogenesis pathways, these transcript classes differ in many regards. LincRNAs are less evolutionarily conserved, less abundant, and more tissue-specific, suggesting that their pre- and post-transcriptional regulation is different from that of mRNAs. Here, we perform an in-depth characterization of the features that contribute to lincRNA regulation in multiple human cell lines. We find that lincRNA promoters are depleted of transcription factor (TF) binding sites, yet enriched for some specific factors such as GATA and FOS relative to mRNA promoters. Surprisingly, we find that H3K9me3-a histone modification typically associated with transcriptional repression-is more enriched at the promoters of active lincRNA loci than at those of active mRNAs. Moreover, H3K9me3-marked lincRNA genes are more tissue-specific. The most discriminant differences between lincRNAs and mRNAs involve splicing. LincRNAs are less efficiently spliced, which cannot be explained by differences in U1 binding or the density of exonic splicing enhancers but may be partially attributed to lower U2AF65 binding and weaker splicing-related motifs. Conversely, the stability of lincRNAs and mRNAs is similar, differing only with regard to the location of stabilizing protein binding sites. Finally, we find that certain transcriptional properties are correlated with higher evolutionary conservation in both DNA and RNA motifs and are enriched in lincRNAs that have been functionally characterized.


Asunto(s)
Cromatina/genética , Evolución Molecular , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Sitios de Unión , Secuencia Conservada/genética , Exones/genética , Regulación de la Expresión Génica/genética , Humanos , Motivos de Nucleótidos/genética , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Empalme del ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Factor de Empalme U2AF/genética
6.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23823723

RESUMEN

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Asunto(s)
Variación Genética , Hominidae/genética , África , Animales , Animales Salvajes/genética , Animales de Zoológico/genética , Asia Sudoriental , Evolución Molecular , Flujo Génico/genética , Genética de Población , Genoma/genética , Gorilla gorilla/clasificación , Gorilla gorilla/genética , Hominidae/clasificación , Humanos , Endogamia , Pan paniscus/clasificación , Pan paniscus/genética , Pan troglodytes/clasificación , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
7.
BMC Genomics ; 17: 707, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27595844

RESUMEN

BACKGROUND: Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. RESULTS: Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. CONCLUSIONS: Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/inmunología , Inmunidad Innata , Leucocitos Mononucleares/inmunología , Animales , Ebolavirus/patogenicidad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Leucocitos Mononucleares/metabolismo , Macaca/virología , Ratones , Análisis de Secuencia de ARN/métodos , Replicación Viral
8.
Proc Natl Acad Sci U S A ; 109(29): 11872-7, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753475

RESUMEN

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.


Asunto(s)
Evolución Biológica , Cucumis melo/genética , Genoma de Planta/genética , Filogenia , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Elementos Transponibles de ADN/genética , Resistencia a la Enfermedad/genética , Genes Duplicados/genética , Genes de Plantas/genética , Genómica/métodos , Funciones de Verosimilitud , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
9.
Genome Biol ; 25(1): 94, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622708

RESUMEN

Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.


Asunto(s)
Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
10.
iScience ; 27(6): 109981, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868191

RESUMEN

Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).

11.
BMC Genomics ; 14: 363, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23721540

RESUMEN

BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.


Asunto(s)
Genómica , Gorilla gorilla/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Endogamia , Secuencia de Aminoácidos , Animales , Femenino , Heterocigoto , Masculino , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia de ADN
12.
Mol Biol Evol ; 29(1): 25-30, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21890475

RESUMEN

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


Asunto(s)
Evolución Molecular , Densidad de Población , Grupos Raciales/genética , Grupos Raciales/historia , Recombinación Genética , África , Asia , Bases de Datos Genéticas , Europa (Continente) , Historia Antigua , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estadísticas no Paramétricas
13.
Cell Genom ; 3(7): 100330, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492106

RESUMEN

High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.

14.
Cell Genom ; 3(1): 100244, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36777183

RESUMEN

Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.

15.
Nat Commun ; 14(1): 3866, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391481

RESUMEN

Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , ARN Largo no Codificante , Animales , Fiebre Hemorrágica Ebola/genética , ARN Largo no Codificante/genética , Macaca mulatta , Ebolavirus/genética , Internalización del Virus
16.
Clin Cancer Res ; 29(2): 432-445, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36374558

RESUMEN

PURPOSE: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Evaluación Preclínica de Medicamentos , Xenoinjertos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética
17.
Cell Genom ; 3(12): 100440, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38169842

RESUMEN

Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolution method, we found that viral load correlated with increased monocyte presence. Patterns of viral variation between tissues differentiated primary infections from compartmentalized infections, and several variants impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illuminates new features of pathogenesis and establishes resources to study other emerging pathogens.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Fiebres Hemorrágicas Virales , Animales , Fiebre Hemorrágica Ebola/patología , Macaca mulatta , Ebolavirus/genética
18.
Hum Genet ; 131(4): 601-13, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22006219

RESUMEN

We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network construction with recombining chromosomal segments. Here, a subARG is constructed independently for each of five gene-free regions across the X chromosome, and the results are aggregated across them. For PCA, MDS and ancestry inference with STRUCTURE, the subARG is processed to obtain feature vectors of samples and pairwise distances between samples. The observed population structure, estimated from the five short X chromosomal segments, supports genome-wide frequency-based analyses: African populations show higher genetic diversity, and the general trend of shared variation is seen across the globe from Africa through Middle East, Europe, Central Asia, Southeast Asia, and East Asia in broad patterns. The recombinational analysis was also compared with established methods based on SNPs and haplotypes. For haplotypes, we also employed a fixed-length approach based on information-content optimization. Our recombinational analysis suggested a southern migration route out of Africa, and it also supports a single, rapid human expansion from Africa to East Asia through South Asia.


Asunto(s)
Variación Genética , Haplotipos/genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , África , Asia Central , Asia Sudoriental , Mapeo Cromosómico , Cromosomas Humanos X/genética , Europa (Continente) , Evolución Molecular , Asia Oriental , Femenino , Genética de Población/métodos , Genotipo , Geografía , Humanos , Masculino , Medio Oriente , Modelos Genéticos , Dinámica Poblacional , Reproducibilidad de los Resultados
19.
Bioinformatics ; 27(17): 2448-50, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21765095

RESUMEN

SUMMARY: Given a set of extant haplotypes IRiS first detects high confidence recombination events in their shared genealogy. Next using the local sequence topology defined by each detected event, it integrates these recombinations into an ancestral recombination graph. While the current system has been calibrated for human population data, it is easily extendible to other species as well. AVAILABILITY: IRiS (Identification of Recombinations in Sequences) binary files are available for non-commercial use in both Linux and Microsoft Windows, 32 and 64 bit environments from https://researcher.ibm.com/researcher/view_project.php?id = 2303 CONTACT: parida@us.ibm.com.


Asunto(s)
Genómica , Recombinación Genética , Programas Informáticos , Algoritmos , Genoma Humano , Haplotipos , Humanos , Modelos Genéticos
20.
Commun Biol ; 5(1): 565, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681050

RESUMEN

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Asunto(s)
Envejecimiento , Telómero , Envejecimiento/genética , Epigénesis Genética , Femenino , Humanos , Estilo de Vida , Padres , Embarazo , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA