Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 21(7): 237, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32808055

RESUMEN

Valero-fenbendazole (VAL-FBZ) is a novel hybrid compound with in vitro anthelmintic activity, designed and synthesized to address the global problem of resistance to anthelmintic compounds. This new molecule derives from fenbendazole (FBZ), a well-known commercially available benzimidazole used in veterinary medicine despite its poor water solubility. In this work, we report for the first time a strategy to solve the solubility problems of FBZ and VAL-FBZ by means of self-dispersible nanocrystals (SDNC). Nanocrystals were prepared by media milling followed by a spray-drying step, and a comprehensive and exhaustive structural and physicochemical characterization was carried out, in order to understand the systems and their behavior. The formulation poloxamer 188 (P188):FBZ 1:1 turned out with the best process yield (53%) and re-dispersability properties, particle size average of 258 nm, and polydispersity index of 0.2 after redispersion in water. The dissolution profile showed a markedly increased dissolution rate compared with the simple mixture of the components (80% FBZ dissolved in 15 min from the SDNC vs 14% from the control formulation). FTIR spectroscopy, thermal analysis, and X-Ray Powder Diffraction (XRPD) studies showed no chemical interactions between components and an extensive confocal Raman microscopy analysis of the formulations showed very homogeneous spatial distribution of components in the SDNC samples. This manufacturing process was then successfully transferred for preparing and characterizing VAL-FBZ:P188 (1:1) SDNC with similar results, suggesting the promising interest of a novel anthelmintic with improved biopharmaceutical behavior. In conclusion, new FBZ and VAL-FBZ SDNC with improved dissolution rate were successfully prepared and characterized. Graphical abstract.


Asunto(s)
Fenbendazol/química , Lactamas/química , Nanopartículas/química , Desecación , Excipientes/química , Tamaño de la Partícula , Poloxámero/química , Difracción de Polvo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química
2.
Pharmaceutics ; 15(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840006

RESUMEN

Triamcinolone acetonide (TA) is a powerful anti-inflammatory drug used in the treatment of inflammatory ocular disorders; however, its poor aqueous solubility and ocular anatomical barriers hinder optimal treatment. The aim of this work was to obtain triamcinolone acetonide nanocrystals (TA-NC) to improve ocular corticosteroid therapy. Self-dispersible TA-NC were prepared by the bead milling technique followed by spray-drying, exhaustively characterized and then evaluated in vivo in an ocular model of endotoxin-induced uveitis (EIU). Self-dispersible TA-NC presented an average particle size of 257 ± 30 nm, a narrow size distribution and a zeta potential of -25 ± 3 mV, which remained unchanged for 120 days under storage conditions at 25 °C. In addition, SEM studies of the TA-NC showed uniform and spherical morphology, and FTIR and XRDP analyses indicated no apparent chemical and crystallinity changes. The subconjunctival administration of TA-NC in albino male white rabbits showed no clinical signs of ocular damage. In vivo studies proved that treatment with self-dispersible TA-NC alleviated the inflammatory response in the anterior chamber and iris in EUI rabbit eyes. Dispersible TA-NC are a promising approach to obtaining a novel nanometric TA formulation for ocular disorders.

3.
Parasit Vectors ; 15(1): 129, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413885

RESUMEN

BACKGROUND: Helminthiasis and resistance to commercial anthelmintic compounds are major causes of economic losses for livestock producers, resulting in an urgent need for new drugs and reliable in vitro screening tests capable of detecting potentially active products. Considering this, a series of novel benzimidazole derivatives (5-methylbenzimidazole 1,2-disubstituted, 5-carboxybenzimidazole, 5-methylbenzimidazole 2-one) was screened on exsheathed L3 (xL3) and on the adult stage of Haemonchus contortus (Kirby anthelmintic-susceptible McMaster isolate). METHODS: This work presents the set-up of an automated motility assay on the xL3 stage of H. contortus using an infrared tracking device (WMicrotracker One) together with a larval development test (xL3 to L4) and a motility assay on the adult stage of H. contortus. A comparative study of the sensitivity of these in vitro assays using commercial anthelmintics with different mechanisms of action was carried out, also evaluating anthelmintic activity of a series of novel benzimidazole derivatives. RESULTS: The automated xL3 assay had the great advantage of being able to analyze many compounds simultaneously, but it showed the limitation of having lower sensitivity, requiring higher concentrations of the commercial anthelmintics tested compared to those needed for the adult motility or development assays. Although none of the novel 1,2,5-tri-substituted benzimidazole derivatives could significantly decrease the motility of xL3s, one of them (1e) significantly affected the development of xL3s to L4, and five new compounds (1b, 1d, 1e, 2a and 2c) reduced the motility of H. contortus adult stage. CONCLUSIONS: The analysis of the results strongly suggests that the in vitro xL3 to L4 development test, particularly for the L4 stage, could be closer to the pharmacological sensitivity of the adult stage of H. contortus (target of interest) for commercial anthelmintic selected, with different mechanisms of action, and for the series of benzimidazole derivatives assayed. Therefore, an automated motility assay on L4 using the infrared tracking device is being set up. Further studies will be conducted to evaluate the in vivo anthelmintic activity of the most active novel benzimidazole derivatives.


Asunto(s)
Antihelmínticos , Haemonchus , Animales , Antihelmínticos/farmacología , Antinematodos/farmacología , Bioensayo , Técnicas In Vitro , Larva
4.
Ther Deliv ; 12(8): 597-610, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34286600

RESUMEN

Aim: Understanding a drug dissolution process from solid dispersions (SD) to develop formulations with predictable in vivo performance. Materials & methods: Dissolution data of fenbendazole released from the SDs and the control physical mixtures were analyzed using the Lumped mathematical model to estimate the parameters of pharmaceutical relevance. Results: The fit data obtained by Lumped model showed that all SDs have a unique dissolution profile with an error of ±4.1% and an initial release rate 500-times higher than the pure drug, without incidence of drug/polymer ratio or polymer type. Conclusion: The Lumped model helped to understand that the main factor influencing the fenbendazole release was the type formulation (SD or physical mixture), regardless of the type or amount of polymer used.


Asunto(s)
Fenbendazol , Preparaciones Farmacéuticas , Liberación de Fármacos , Polímeros , Solubilidad
5.
Res Vet Sci ; 142: 110-116, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34922278

RESUMEN

Benzimidazole methylcarbamate anthelmintics, including fenbendazole (FBZ), have only limited water solubility and small differences in drug solubility may have a major influence on their absorption, pharmacokinetic behavior and anthelmintic efficacy. To improve FBZ water solubility and dissolution rate, novel self-dispersible nanocrystals (SDNCs) of FBZ were recently described. In this work, the pharmacokinetic behavior of the SDNCs of FBZ and Poloxamer 188 was compared against a physical mixture (PM) of its components. The experiment was conducted following a crossover design with two different experimental phases. In phase I, sheep were treated with the SDNC (n = 3) or the PM (n = 3) formulations by the intraruminal route at the same dose rate (5 mg/kg). The treatment groups were reversed after a 7-days washout period. A non-compartmental analysis of the concentration in plasma versus time results showed that the calculated Cmax and AUC0-T were significantly higher (p < 0.05) for FBZ and its metabolites after the SDNC treatment compared to the PM (for FBZ: Cmax 0.346 µg/mL and AUC0-T 10.1 µg.h/mL after the SDNC vs Cmax 0.157 µg/mL and AUC0-T 5.1 µg.h/mL after the PM treatment). Additionally, population pharmacokinetic parameters of FBZ were estimated for the first time in sheep. In conclusion, the formulation of FBZ as SDNCs is a promising approach to improve FBZ dissolution reaching a higher drug plasma exposure in ruminants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA