Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(42): 17010-5, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027934

RESUMEN

We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/antagonistas & inhibidores , 1-Metil-4-fenilpiridinio/antagonistas & inhibidores , Carbazoles/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/prevención & control , Sustancia Negra/citología , Animales , Apoptosis/efectos de los fármacos , Caenorhabditis elegans , Carbazoles/síntesis química , Carbazoles/química , Carbazoles/farmacocinética , Relación Dosis-Respuesta a Droga , Hipocampo/citología , Hipocampo/efectos de los fármacos , Indoles/farmacocinética , Indoles/farmacología , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Sustancia Negra/efectos de los fármacos
2.
J Mol Biol ; 426(10): 2045-58, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24495995

RESUMEN

The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.


Asunto(s)
Antivirales/química , Coenzimas/antagonistas & inhibidores , Ebolavirus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Antivirales/farmacología , Coenzimas/química , Simulación por Computador , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Ebolavirus/enzimología , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Pirroles/química , Pirroles/metabolismo , Pirroles/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Reguladoras y Accesorias Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA