Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pacing Clin Electrophysiol ; 46(6): 487-497, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36633015

RESUMEN

BACKGROUND: Although Lesion size index (LSI) has been reported to highly predict radiofrequency lesion size in vitro, its accuracy in lesion size and steam pop estimation has not been well investigated for every possible scenario. METHODS: Initially, radiofrequency ablations were performed on porcine myocardial slabs at various power, CF, and time settings with blinded LSI. Subsequently, radiofrequency power at 20, 30, 40, 50, and 60 W was applied at CF values of 5, 10, 20, and 30 g to reach target LSIs of 4, 5, 6, and 7. Lesion size and steam pops were recorded for each ablation. RESULTS: Lesion size was positively correlated with LSI regardless of power settings (p < 0.001). The linear correlation coefficients of lesion size and LSI decreased at higher power settings. At high power combined with high CF settings (50 W/20 g), lesion depth and LSI showed an irrelevant correlation (p = 0.7855). High-power ablation shortened ablation time and increased the effect of resistive heating. LSI could predict the risk of steam pops at high-power settings with the optimal threshold of 5.65 (sensitivity, 94.1%; specificity, 46.1%). The ablation depth of the heavy heart was shallower than that of the light heart under similar ablation settings. CONCLUSIONS: LSI could predict radiofrequency lesion size and steam pops at high power settings in vitro, while synchronous high power and high CF should be avoided. Lighter hearts require relatively lower ablation settings to create appropriate ablation depth.


Asunto(s)
Ablación por Catéter , Vapor , Porcinos , Animales , Miocardio/patología
2.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675183

RESUMEN

Cuproptosis resulting from copper (Cu) overload has not yet been investigated in diabetic cardiomyopathy (DCM). Advanced glycosylation end products (AGEs) induced by persistent hyperglycemia play an essential role in cardiotoxicity. To clarify whether cuproptosis was involved in AGEs-induced cardiotoxicity, we analyzed the toxicity of AGEs and copper in AC16 cardiomyocytes and in STZ-induced or db/db-diabetic mouse models. The results showed that copper ionophore elesclomol induced cuproptosis in cardiomyocytes. It was only rescued by copper chelator tetrathiomolybdate rather than by other cell death inhibitors. Intriguingly, AGEs triggered cardiomyocyte death and aggravated it when incubated with CuCl2 or elesclomol-CuCl2. Moreover, AGEs increased intracellular copper accumulation and exhibited features of cuproptosis, including loss of Fe-S cluster proteins (FDX1, LIAS, NDUFS8 and ACO2) and decreased lipoylation of DLAT and DLST. These effects were accompanied by decreased mitochondrial oxidative respiration, including downregulated mitochondrial respiratory chain complex, decreased ATP production and suppressed mitochondrial complex I and III activity. Additionally, AGEs promoted the upregulation of copper importer SLC31A1. We predicted that ATF3 and/or SPI1 might be transcriptional factors of SLC31A1 by online databases and validated that by ATF3/SPI1 overexpression. In diabetic mice, copper and AGEs increases in the blood and heart were observed and accompanied by cardiac dysfunction. The protein and mRNA profile changes in diabetic hearts were consistent with cuproptosis. Our findings showed, for the first time, that excessive AGEs and copper in diabetes upregulated ATF3/SPI1/SLC31A1 signaling, thereby disturbing copper homeostasis and promoting cuproptosis. Collectively, the novel mechanism might be an alternative potential therapeutic target for DCM.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Ratones , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Cobre/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Miocitos Cardíacos/metabolismo
3.
Cancer Cell Int ; 22(1): 304, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207761

RESUMEN

BACKGROUND: Mitophagy is a type of selective autophagy for dysfunctional mitochondria and plays a key role in tumorigenesis and cancer progression. However, whether mitophagy plays a role in colon cancer remains unclear. Cirsiliol is a natural product and has been found to exert anti-cancer effects in multiple tumors. The effects of cirsiliol in the tumorigenesis and progression of colon cancer remain unknown. METHODS: CCK8 assay, plate cloning assay, and cell scratch assay were performed to determine cell viability, colony formation, and wound healing abilities of HCT116 and SW480 cells. JC-1 staining, H2DCFDA staining, and Mito-Tracker Red staining were carried out to evaluate mitochondrial membrane potential (Δψm), intracellular reactive oxygen species (ROS) level, and mitochondrial morphology. Molecular docking technology was utilized to predict interaction of cirsiliol and signal transducer and activator of transcription 3 (STAT3). Immunofluorescence staining was used to measure nuclear translocation of STAT3. The protein levels of phosphorylated STAT3 (Y705), total STAT3, and mitophagy proteins were detected by western blot. RESULTS: In this study, we first found that cirsiliol inhibited cell viability, colony formation, and wound healing abilities of HCT116 and SW480 colon cancer cells. Moreover, cirsiliol suppressed Δψm, increased ROS production, and disrupted mitochondrial morphology via inhibiting the levels of mitophagy proteins including PINK1, Parkin, BNIP3, and FUNDC1. Application of mitophagy activator improved the levels of mitophagy-related proteins, and ameliorated Δψm and ROS levels. According to the result of molecular docking, we found that cirsiliol potentially bound to the SH2 domain of STAT3, the key domain for the functional activation of STAT3. Moreover, it was found that cirsiliol inhibited constitutive and IL­6­induced STAT3 phosphorylation and nuclear translocation by western blot and immunofluorescence analysis. Comparing with cirsiliol group, we found that overexpression of STAT3 restored the expressions of mitophagy proteins. CONCLUSIONS: Cirsiliol targets STAT3 to inhibit colon cancer cell proliferation by regulating mitophagy.

4.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36986461

RESUMEN

Notopterol is a naturally occurring furanocoumarin compound found in the root of Notopterygium incisum. Hyperuricemia involves the activation of chronic inflammation and leads to cardiac damage. Whether notopterol has cardioprotective potential in hyperuricemia mice remains elusive. The hyperuricemic mouse model was constructed by administration of potassium oxonate and adenine every other day for six weeks. Notopterol (20 mg/kg) and allopurinol (10 mg/kg) were given daily as treatment, respectively. The results showed that hyperuricemia dampened heart function and reduced exercise capacity. Notopterol treatment improved exercise capacity and alleviated cardiac dysfunction in hyperuricemic mice. P2X7R and pyroptosis signals were activated both in hyperuricemic mice and in uric acid-stimulated H9c2 cells. Additionally, it was verified that inhibition of P2X7R alleviated pyroptosis and inflammatory signals in uric acid-treated H9c2 cells. Notopterol administration significantly suppressed expression levels of pyroptosis associated proteins and P2X7R in vivo and in vitro. P2X7R overexpression abolished the inhibition effect of notopterol on pyroptosis. Collectively, our findings suggested that P2X7R played a critical role in uric acid-induced NLRP3 inflammatory signals. Notopterol inhibited pyroptosis via inhibiting the P2X7R/NLRP3 signaling pathway under uric acid stimulation. Notopterol might represent a potential therapeutic strategy against pyroptosis and improve cardiac function in hyperuricemic mice.

5.
Free Radic Biol Med ; 201: 111-125, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-36940731

RESUMEN

High-fat diet (HFD) intake provokes obesity and cardiac anomalies. Recent studies have found that ferroptosis plays a role in HFD-induced cardiac injury, but the underlying mechanism is largely unclear. Ferritinophagy is an important part of ferroptosis that is regulated by nuclear receptor coactivator 4 (NCOA4). However, the relationship between ferritinophagy and HFD-induced cardiac damage has not been explored. In this study, we found that oleic acid/palmitic acid (OA/PA) increased the level of ferroptotic events including iron and ROS accumulation, upregulation of PTGS2 mRNA and protein levels, reduced SOD and GSH levels, and significant mitochondrial damage in H9C2 cells, which could be reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Intriguingly, we found that the autophagy inhibitor 3-methyladenine mitigated OA/PA-induced ferritin downregulation, iron overload and ferroptosis. OA/PA increased the protein level of NCOA4. Knockdown of NCOA4 by SiRNA partly reversed the reduction in ferritin, mitigated iron overload and lipid peroxidation, and subsequently alleviated OA/PA-induced cell death, indicating that NCOA4-mediated ferritinophagy was required for OA/PA-induced ferroptosis. Furthermore, we demonstrated that NCOA4 was regulated by IL-6/STAT3 signaling. Inhibition or knockdown of STAT3 effectively reduced NCOA4 levels to protect H9C2 cells from ferritinophagy-mediated ferroptosis, whereas STAT3 overexpression by plasmid appeared to increase NCOA4 expression and contribute to classical ferroptotic events. Consistently, phosphorylated STAT3 upregulation, ferritinophagy activation, and ferroptosis induction also occurred in HFD-fed mice and were responsible for HFD-induced cardiac injury. In addition, we found evidence that piperlongumine, a natural compound, effectively reduced phosphorylated STAT3 levels to protect cardiomyocytes from ferritinophagy-mediated ferroptosis both in vitro and in vivo. Based on these findings, we concluded that ferritinophagy-mediated ferroptosis was one of the critical mechanisms contributing to HFD-induced cardiac injury. The STAT3/NCOA4/FTH1 axis might be a novel therapeutic target for the treatment of HFD-induced cardiac injury.


Asunto(s)
Ferroptosis , Lesiones Cardíacas , Sobrecarga de Hierro , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ferroptosis/genética , Transducción de Señal , Autofagia , Ferritinas/genética , Coactivadores de Receptor Nuclear/genética
6.
Free Radic Biol Med ; 205: 163-174, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307935

RESUMEN

Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic ß-adrenergic stimulation. STAT3 plays a critical role in ß-adrenergic functions in the heart. However, whether STAT3 contributed to ß-adrenoceptor-mediated PERK activation and how ß-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic ß-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic ß-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional ß-blockers to attenuate ß-adrenoceptor-mediated maladaptive UPR.


Asunto(s)
Interleucina-6 , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Isoproterenol/farmacología , Interleucina-6/genética , Interleucina-6/metabolismo , Endorribonucleasas/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Adrenérgicos , Carvedilol , Ratones Endogámicos C57BL , Respuesta de Proteína Desplegada , Receptores Adrenérgicos/metabolismo
7.
Cardiol Res Pract ; 2022: 4570926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154824

RESUMEN

Cancer survivors suffer a higher risk of coronary artery atherosclerosis (CAA). Whether cancer patients had increased baseline CAA burden prior to cardiotoxic therapy remains unclear. We conducted a case-control study, and 286 consecutive patients were finally included. Among these patients, 181 had newly diagnosed cancer and 105 had nonmalignant diseases. Cancer was confirmed by biopsy. The severity of CAA was determined by coronary angiography and evaluated using the percentage of stenosis or Gensini scoring (GS). Patients with cancer versus cancer-free controls were older (OR = 1.052, 95% CI: 1.021-1.084, p < 0.001), more commonly male (OR = 0.048, 95% CI: 1.004-2.676, p=0.048), and more severely exposed to smoking (OR = 1.020, 95% CI: 1.007-1.033, p=0.003). Cancer patients were significantly more commonly complicated by ≥90% coronary stenosis than the gender- and age-matched cancer-free controls (9/93 versus 1/93, OR = 4.875, 95% CI: 1.024-23.213, p=0.047). After adjustment for age, gender, hypertension, diabetes, smoking history, blood glucose, and total cholesterol, cancer was significantly associated with high GS (adjusted OR = 2.208, 95% CI: 1.077-4.524, p=0.031). Our study demonstrated that cancer patients had increased CAA burden prior to cardiotoxic therapy. Further study is necessary to investigate the link between CAA and cancer.

8.
Front Endocrinol (Lausanne) ; 13: 1011383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313766

RESUMEN

Diabetic cardiomyopathy (DCM) is a severe complication of diabetes mellitus that is characterized by aberrant myocardial structure and function and is the primary cause of heart failure and death in diabetic patients. Endothelial dysfunction plays an essential role in diabetes and is associated with an increased risk of cardiovascular events, but its role in DCM is unclear. Previously, we showed that S-nitroso-L-cysteine(CSNO), an endogenous S-nitrosothiol derived from eNOS, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B), a critical negative modulator of insulin signaling. In this study, we reported that CSNO treatment induced cellular insulin-dependent and insulin-independent glucose uptake. In addition, CSNO activated insulin signaling pathway and promoted GLUT4 membrane translocation. CSNO protected cardiomyocytes against high glucose-induced injury by ameliorating excessive autophagy activation, mitochondrial impairment and oxidative stress. Furthermore, nebulized CSNO improved cardiac function and myocardial fibrosis in diabetic mice. These results suggested a potential site for endothelial modulation of insulin sensitivity and energy metabolism in the development of DCM. Data from these studies will not only help us understand the mechanisms of DCM, but also provide new therapeutic options for treatment.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , S-Nitrosotioles , Ratones , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , S-Nitrosotioles/efectos adversos , S-Nitrosotioles/metabolismo , Insulina/efectos adversos
9.
Front Cardiovasc Med ; 9: 1030290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698937

RESUMEN

Background: The impact of ablation parameters on acute tissue lesion formation after pulmonary vein isolation (PVI) has not been sufficiently evaluated in patients with atrial fibrillation. Radiofrequency ablation lesion can be visualized by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). We sought to quantitatively analyze the relationship between ablation parameter and tissue lesion following PVI at different segments of pulmonary vein (PV) using LGE-CMR. Methods: Twenty-one patients with atrial fibrillation who underwent PVI procedure were retrospectively enrolled. All patients underwent LGE-CMR examination within 3 days after radiofrequency ablation. Ablation parameters during PVI were documented, including lesion size index (LSI), force-time integral (FTI), power, contact force, temperature, and time of duration. The ablation point was projected onto 3-dimensional (3D) left atrial shell constructed base on LGE-CMR and corresponding image intensity ratio (IIR) was calculated on the same shell. A tissue lesion point was defined when the LGE-CMR IIR was > 1.2. Results: In total, 1,759 ablation points were analyzed. The ablation parameters and IIRs for each PV segment were significantly different (P < 0.0001). IIRs corresponding to ablation points at posterior of PV tended to be higher than those at non-posterior of PV when similar ablation parameters were applied during ablation. LSI was a better predictor of tissue lesion existence following PVI than FTI, contact force, power, temperature, and duration time at non-posterior wall of PV. The IIR showed positive correlation with LSI at non-posterior wall of PV (non-posterior of right PV, r = 0.13, P = 0.001, non-posterior of left PV, r = 0.26, P < 0.0001). Conclusion: When similar ablation parameters were applied during PVI, the posterior wall of PV had more severe tissue lesion than non-posterior wall of PV. Therefore, it was reasonable to decrease ablation energy at posterior wall of PV. Moreover, LSI was a better index to reflect tissue lesion quality following PVI at non-posterior of PV.

10.
Front Cardiovasc Med ; 8: 790612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118141

RESUMEN

AIMS: Cytokine storm is closely related to the initiation and progression of sepsis, and the level of IL-6 is positively correlated with mortality and organ dysfunction. Sepsis-induced myocardial dysfunction (SIMD) is one of the major complications. However, the role of the IL-6/STAT3 signaling in the SIMD remains unclear. METHODS AND RESULTS: Septic mice were induced by intraperitoneal injection of LPS (10 mg/kg). Echocardiography, cytokines detection, and histologic examination showed that sepsis mice developed cardiac systolic and diastolic dysfunction, increase of inflammatory cytokines in serum, activated STAT3 and TLR4/NFκB pathway in heart, and raised myocardial apoptosis, which were attenuated by IL-6/STAT3 inhibitor, Bazedoxifene. In vitro, we found that LPS decreased cell viability in a concentration-dependent manner and activated STAT3. Western blot and immunofluorescence results indicated that STAT3 phosphorylation induced by LPS was inhibited by Bazedoxifene. Bazedoxifene also suppressed LPS-induced IL-6 transcription. sIL-6R caused LPS-induced p-STAT3 firstly decreased and then significantly increased. More importantly, we found STAT3-knockdown suppressed LPS-induced expression of FUNDC1, a protein located in mitochondria-associated endoplasmic reticulum membranes (MAMs). Overexpression of STAT3 led to an increase in FUNDC1 expression. Dual-luciferase reporter assay was used to confirm that STAT3 was a potential transcription factor for FUNDC1. Moreover, we showed that LPS increased MAMs formation and intracellular Ca2+ levels, enhanced the expression of Cav1.2 and RyR2, decreased mitochondrial membrane potential and intracellular ATP levels, and promoted mitochondrial fragmentation, the expression of mitophagy proteins and ROS production in H9c2 cells, which were reversed by knockdown of FUNDC1 and IL-6/STAT3 inhibitor including Bazedoxifene and Stattic. CONCLUSIONS: IL-6/STAT3 pathway plays a key role in LPS-induced myocardial dysfunction, through regulating the FUNDC1-associated MAMs formation and interfering the function of ER and mitochondria. IL-6/STAT3/FUNDC1 signaling could be a new therapeutic target for SIMD.

11.
Int J Oncol ; 59(6)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34726248

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) activation is associated with drug resistance induced by anti­epidermal growth factor receptor (anti­EGFR) therapy in the treatment of colon cancer. Thus, the combined inhibition of EGFR and STAT3 may prove beneficial for this type of cancer. STAT3 has been proven to play a critical role in colon cancer initiation and progression, and is considered the primary downstream effector driven by interleukin­6 (IL­6). A disintegrin and metalloproteinase 17 (ADAM17), documented as an oncogene, catalyzes the cleavage of both EGF and IL­6R, inducing EGFR signaling and enabling IL­6 trans­signaling to activate STAT3 in a wide range of cell types to promote inflammation and cancer development. As a natural product, shikonin (SKN) has been found to function as an antitumor agent; however, its role in the regulation of ADAM17 and IL­6/STAT3 signaling in colon cancer cells remains unknown. In the present study, it was found that SKN inhibited colon cancer cell growth, suppressed both constitutive and IL­6­induced STAT3 phosphorylation, and downregulated the expression of ADAM17. ADAM17 expression was not altered in response to STAT3 knockdown, while IL­6­induced STAT3 activation did not induce ADAM17 transcripts. Furthermore, it was demonstrated that SKN did not affect the expression of key proteins involved in the maturation and degradation of ADAM17. SKN decreased ADAM17 expression possibly through reactive oxygen species (ROS)­mediated translational inhibition, as evidenced by the increased ADAM17 mRNA and phosphorylation levels of eukaryotic initiation factor 2α (eIF2α). The expression of ADAM17 and p­eIF2α was reversed by N­acetylcysteine (NAC, a ROS scavenger). Taken together, these results indicate that the concurrent inhibition of ADAM17 and IL­6/STAT3 signaling by SKN may synergistically contribute to the suppression of colon cancer cell growth.


Asunto(s)
Proteína ADAM17/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-6/metabolismo , Naftoquinonas/farmacología , Factor de Transcripción STAT3/metabolismo , Proteína ADAM17/genética , Antiinflamatorios no Esteroideos/farmacología , Apoptosis , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Interleucina-6/genética , Factor de Transcripción STAT3/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA