Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 23(6): 2078-2089, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38666436

RESUMEN

Data-independent acquisition (DIA) has become a well-established method for MS-based proteomics. However, the list of options to analyze this type of data is quite extensive, and the use of spectral libraries has become an important factor in DIA data analysis. More specifically the use of in silico predicted libraries is gaining more interest. By working with a differential spike-in of human standard proteins (UPS2) in a constant yeast tryptic digest background, we evaluated the sensitivity, precision, and accuracy of the use of in silico predicted libraries in data DIA data analysis workflows compared to more established workflows. Three commonly used DIA software tools, DIA-NN, EncyclopeDIA, and Spectronaut, were each tested in spectral library mode and spectral library-free mode. In spectral library mode, we used independent spectral library prediction tools PROSIT and MS2PIP together with DeepLC, next to classical data-dependent acquisition (DDA)-based spectral libraries. In total, we benchmarked 12 computational workflows for DIA. Our comparison showed that DIA-NN reached the highest sensitivity while maintaining a good compromise on the reproducibility and accuracy levels in either library-free mode or using in silico predicted libraries pointing to a general benefit in using in silico predicted libraries.


Asunto(s)
Simulación por Computador , Proteómica , Programas Informáticos , Flujo de Trabajo , Proteómica/métodos , Proteómica/estadística & datos numéricos , Humanos , Reproducibilidad de los Resultados , Análisis de Datos , Biblioteca de Péptidos
2.
EMBO Rep ; 22(6): e52626, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34009726

RESUMEN

Proteomics research infrastructures and core facilities within the Core for Life alliance advocate for community policies for quality control to ensure high standards in proteomics services.


Asunto(s)
Proteómica , Espectrometría de Masas
3.
Methods Cell Biol ; 127: 263-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837396

RESUMEN

The cilium has a well-defined structure, which can still accommodate some morphological and molecular composition diversity to suit the functional requirements of different cell types. The sperm flagellum of the fruit fly Drosophila melanogaster appears as a good model to study the genetic regulation of axoneme assembly and motility, due to the wealth of genetic tools publically available for this organism. In addition, the fruit fly's sperm flagellum displays quite a long axoneme (∼1.8mm), which may facilitate both histological and biochemical analyses. Here, we present a protocol for imaging and quantitatively analyze proteins, which associate with the fly differentiating, and mature sperm flagella. We will use as an example the quantification of tubulin polyglycylation in wild-type testes and in Bug22 mutant testes, which present defects in the deposition of this posttranslational modification. During sperm biogenesis, flagella appear tightly bundled, which makes it more challenging to get accurate measurements of protein levels from immunostained specimens. The method we present is based on the use of a novel semiautomated, macro installed in the image processing software ImageJ. It allows to measure fluorescence levels in closely associated sperm tails, through an exact distinction between positive and background signals, and provides background-corrected pixel intensity values that can directly be used for data analysis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Flagelos/metabolismo , Proteoma/análisis , Cola del Espermatozoide/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Procesamiento de Imagen Asistido por Computador , Masculino , Imagen Óptica/métodos , Procesamiento Proteico-Postraduccional/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
Biol Open ; 3(2): 138-51, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24414207

RESUMEN

Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary genes are associated with various diseases such as ciliopathies and infertility. Here, we describe the role of the highly conserved ciliary protein, Bug22, in Drosophila. Previous studies in unicellular organisms have shown that Bug22 is required for proper cilia function, but its exact role in ciliogenesis has not been investigated yet. Null Bug22 mutant flies display cilia-associated phenotypes and nervous system defects. Furthermore, sperm differentiation is blocked at the individualization stage, due to impaired migration of the individualization machinery. Tubulin post-translational modifications (PTMs) such as polyglycylation, polyglutamylation or acetylation, are determinants of microtubule (MT) functions and stability in centrioles, cilia and neurons. We found defects in the timely incorporation of polyglycylation in sperm axonemal MTs of Bug22 mutants. In addition, we found that depletion of human Bug22 in RPE1 cells resulted in the appearance of longer cilia and reduced axonemal polyglutamylation. Our work identifies Bug22 as a protein that plays a conserved role in the regulation of PTMs of the ciliary axoneme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA