Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727617

RESUMEN

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Asunto(s)
Replicación del ADN/genética , Genoma/genética , Heterocromatina/genética , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Línea Celular Tumoral , Centrómero/genética , Cromatina/genética , ADN Helicasas/genética , G-Cuádruplex , Células HeLa , Humanos , Fase S/genética
2.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26774283

RESUMEN

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Emparejamiento Base , ADN/metabolismo , Daño del ADN , Reparación del ADN por Unión de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Complejo Shelterina , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química
3.
Nucleic Acids Res ; 50(4): 2081-2095, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35150283

RESUMEN

The shelterin protein complex is required for telomere protection in various eukaryotic organisms. In mammals, the shelterin subunit TRF2 is specialized in preventing ATM activation at telomeres and chromosome end fusion in somatic cells. Here, we demonstrate that the zebrafish ortholog of TRF2 (encoded by the terfa gene) is protecting against unwanted ATM activation genome-wide. The terfa-compromised fish develop a prominent and specific embryonic neurodevelopmental failure. The heterozygous fish survive to adulthood but exhibit a premature aging phenotype. The recovery from embryonic neurodevelopmental failure requires both ATM inhibition and transcriptional complementation of neural genes. Furthermore, restoring the expression of TRF2 in glial cells rescues the embryonic neurodevelopment phenotype. These results indicate that the shelterin subunit TRF2 evolved in zebrafish as a general factor of genome maintenance and transcriptional regulation that is required for proper neurodevelopment and normal aging. These findings uncover how TRF2 links development to aging by separate functions in gene expression regulation and genome stability control.


Asunto(s)
Proteína 2 de Unión a Repeticiones Teloméricas , Pez Cebra , Envejecimiento/genética , Animales , Mamíferos/genética , Complejo Shelterina , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Pez Cebra/genética
4.
Nucleic Acids Res ; 50(13): 7493-7510, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35819196

RESUMEN

Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53-TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.


Asunto(s)
Senescencia Celular , Centrómero , Heterocromatina , Acortamiento del Telómero , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Cromatina , Daño del ADN , Regulación hacia Abajo , Células HeLa , Humanos , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
5.
EMBO Rep ; 21(4): e49076, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32096305

RESUMEN

Repressor/activator protein 1 (RAP1) is a highly evolutionarily conserved protein found at telomeres. Although yeast Rap1 is a key telomere capping protein preventing non-homologous end joining (NHEJ) and consequently telomere fusions, its role at mammalian telomeres in vivo is still controversial. Here, we demonstrate that RAP1 is required to protect telomeres in replicative senescent human cells. Downregulation of RAP1 in these cells, but not in young or dividing pre-senescent cells, leads to telomere uncapping and fusions. The anti-fusion effect of RAP1 was further explored in a HeLa cell line where RAP1 expression was depleted through an inducible CRISPR/Cas9 strategy. Depletion of RAP1 in these cells gives rise to telomere fusions only when telomerase is inhibited. We further show that the fusions triggered by RAP1 loss are dependent upon DNA ligase IV. We conclude that human RAP1 is specifically involved in protecting critically short telomeres. This has important implications for the functions of telomeres in senescent cells.


Asunto(s)
Telómero , Factor de Transcripción AP-1 , Animales , Senescencia Celular/genética , Daño del ADN , Células HeLa , Humanos , Telómero/genética , Proteínas de Unión a Telómeros/genética
6.
Nucleic Acids Res ; 42(1): 315-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24057213

RESUMEN

Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest measured in somatic cells but not the germline. The telomere carrying the CI-HHV-6 is also prone to truncations that result in the formation of a short telomere at a novel location within the viral genome. We detected extra-chromosomal circular HHV-6 molecules, some surprisingly comprising the entire viral genome with a single fully reconstituted direct repeat region (DR) with both terminal cleavage and packaging elements (PAC1 and PAC2). Truncated CI-HHV-6 and extra-chromosomal circular molecules are likely reciprocal products that arise through excision of a telomere-loop (t-loop) formed within the CI-HHV-6 genome. In summary, we show that the CI-HHV-6 genome disrupts stability of the associated telomere and this facilitates the release of viral sequences as circular molecules, some of which have the potential to become fully functioning viruses.


Asunto(s)
Genoma Viral , Herpesvirus Humano 6/genética , Acortamiento del Telómero , Telómero/metabolismo , Integración Viral , Secuencia de Bases , Línea Celular , Cromosomas , Genes Virales , Humanos , Datos de Secuencia Molecular , Empalme del ARN , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/química
7.
Nucleic Acids Res ; 40(21): 10809-20, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22989712

RESUMEN

Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN- ALT+ cell line lacks the class of complex telomere mutations attributed to inter-telomeric recombination in other ALT+ cell lines. This suggests that WRN facilitates inter-telomeric recombination when there are sequence differences between the donor and recipient molecules or that sister-telomere interactions are suppressed in the presence of WRN and this promotes inter-telomeric recombination. Depleting BLM in the WRN- ALT+ cell line increased the mutation frequency at telomeres and at the MS32 minisatellite, which is a marker of ALT. The absence of complex telomere mutations persisted in BLM-depleted clones, and there was a clear increase in sequence homogenization across the telomere and MS32 repeat arrays. These data indicate that BLM suppresses unequal sister chromatid interactions that result in excessive homogenization at MS32 and at telomeres in ALT+ cells.


Asunto(s)
Exodesoxirribonucleasas/fisiología , RecQ Helicasas/fisiología , Homeostasis del Telómero , Secuencia de Bases , Línea Celular , Regulación hacia Abajo , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite , Datos de Secuencia Molecular , Mutación , RecQ Helicasas/metabolismo , Telómero/química , Helicasa del Síndrome de Werner
8.
Aging Cell ; 22(5): e13804, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924026

RESUMEN

Aging is a continuous process leading to physiological deterioration with age. One of the factors contributing to aging is telomere shortening, causing alterations in the protein protective complex named shelterin and replicative senescence. Here, we address the question of the link between this telomere shortening and the transcriptional changes occurring in senescent cells. We found that in replicative senescent cells, the genes whose expression escaped repression are enriched in subtelomeres. The shelterin protein TRF2 and the nuclear lamina factor Lamin B1, both downregulated in senescent cells, are involved in the regulation of some but not all of these subtelomeric genes, suggesting complex mechanisms of transcriptional regulation. Indeed, the subtelomeres containing these derepressed genes are enriched in factors of polycomb repression (EZH2 and H3K27me3), insulation (CTCF and MAZ), and cohesion (RAD21 and SMC3) while being associated with the open A-type chromatin compartment. These findings unveil that the subtelomere transcriptome associated with senescence is determined in a chromosome-end-specific manner according to the type of higher-order chromatin structure.


Asunto(s)
Cromatina , Telómero , Telómero/genética , Cromatina/genética , Heterocromatina , Regulación de la Expresión Génica , Complejo Shelterina , Senescencia Celular/genética
9.
Cell Stem Cell ; 30(2): 153-170.e9, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736290

RESUMEN

Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.


Asunto(s)
Anemia de Fanconi , Leucemia , Humanos , Ratones , Animales , Anemia de Fanconi/genética , Hematopoyesis Clonal , Trisomía/genética , Proteína p53 Supresora de Tumor/genética , Leucemia/genética , Cromosomas , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/genética
10.
Hum Mutat ; 32(8): 939-46, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538690

RESUMEN

DNA mismatch repair (MMR) is essential for genome stability and inheritance of a mutated MMR gene, most frequently MSH2 or MLH1, results in cancer predisposition known as Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC). Tumors that arise through MMR deficiency show instability at simple tandem repeat loci (STRs) throughout the genome, known as microsatellite instability (MSI). The STR instability is dominated by errors that accumulate during replication in the absence of effective MMR. In this study we show that there is a high level of instability within telomeric DNA with a tendency toward deletions in tumor-derived MMR defective cell lines. We downregulated MSH2 expression in a normal fibroblast cell line and isolated four clones, with differing levels of MSH2 depletion. The telomere-shortening rate was measured at the Xp/Yp, 12q, and 17p telomeres in the MSH2 depleted and three control clones. Interestingly the mean telomere-shortening rate in the clones with MSH2 depletion was significantly greater than in the control clones. This is the first demonstration that MSH2 deficiency alone can lead to accelerated telomere shortening in normal human cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Proteína 2 Homóloga a MutS/genética , Telómero/genética , Telómero/metabolismo , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo/genética , Femenino , Feto , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Recién Nacido , Masculino , Inestabilidad de Microsatélites , Datos de Secuencia Molecular , Proteína 2 Homóloga a MutS/deficiencia , Mutación/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
11.
Nucleic Acids Res ; 37(18): 6225-38, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656953

RESUMEN

A number of different processes that impact on telomere length dynamics have been identified but factors that affect the turnover of repeats located proximally within the telomeric DNA are poorly defined. We have identified a particular repeat type (CTAGGG) that is associated with an extraordinarily high mutation rate (20% per gamete) in the male germline. The mutation rate is affected by the length and sequence homogeneity of the (CTAGGG)n array. This level of instability was not seen with other sequence-variant repeats, including the TCAGGG repeat type that has the same composition. Telomeres carrying a (CTAGGG)n array are also highly unstable in somatic cells with the mutation process resulting in small gains or losses of repeats that also occasionally result in the deletion of the whole (CTAGGG)n array. These sequences are prone to quadruplex formation in vitro but adopt a different topology from (TTAGGG)n (see accompanying article). Interestingly, short (CTAGGG)2 oligonucleotides induce a DNA damage response (gammaH2AX foci) as efficiently as (TTAGGG)2 oligos in normal fibroblast cells, suggesting they recruit POT1 from the telomere. Moreover, in vitro assays show that (CTAGGG)n repeats bind POT1 more efficiently than (TTAGGG)n or (TCAGGG)n. We estimate that 7% of human telomeres contain (CTAGGG)n repeats and when present, they create additional problems that probably arise during telomere replication.


Asunto(s)
Mutación de Línea Germinal , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/química , Alelos , Daño del ADN , Replicación del ADN , G-Cuádruplex , Humanos , Masculino , Mutación , Oligonucleótidos/química , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
12.
Life (Basel) ; 11(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804994

RESUMEN

Heterochromatic regions render the replication process particularly difficult due to the high level of chromatin compaction and the presence of repeated DNA sequences. In humans, replication through pericentromeric heterochromatin requires the binding of a complex formed by the telomeric factor TRF2 and the helicase RTEL1 in order to relieve topological barriers blocking fork progression. Since TRF2 is known to bind the Origin Replication Complex (ORC), we hypothesized that this factor could also play a role at the replication origins (ORI) of these heterochromatin regions. By performing DNA combing analysis, we found that the ORI density is higher within pericentromeric satellite DNA repeats than within bulk genomic DNA and decreased upon TRF2 downregulation. Moreover, we showed that TRF2 and ORC2 interact in pericentromeric DNA, providing a mechanism by which TRF2 is involved in ORI activity. Altogether, our findings reveal an essential role for TRF2 in pericentromeric heterochromatin replication by regulating both replication initiation and elongation.

13.
Nat Struct Mol Biol ; 27(4): 313-318, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231287

RESUMEN

Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.


Asunto(s)
Cromatina/genética , Heterocromatina/genética , Proteínas/genética , Telómero/genética , Cromatina/ultraestructura , Replicación del ADN/genética , Heterocromatina/ultraestructura , Humanos , Proteínas/química , Proteínas/ultraestructura , Telómero/ultraestructura
14.
Biochem Soc Trans ; 37(Pt 3): 589-95, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19442255

RESUMEN

Human telomeres shorten during each cell division, predominantly because of incomplete DNA replication. This eventually results in short uncapped telomeres that elicit a DNA-damage response, leading to cellular senescence. However, evasion of senescence results in continued cell division and telomere erosion ultimately results in genome instability. In the long term, this genome instability is not sustainable, and cancer cells activate a TMM (telomere maintenance mechanism), either expression of telomerase or activation of the ALT (alternative lengthening of telomeres) pathway. Activation of the ALT mechanism results in deregulation of recombination-based activities at telomeres. Thus ALT+ cells show elevated T-SCE (telomere sister-chromatid exchange), misprocessing of t-loops that cap chromosomes and recombination-based processes between telomeres or between telomeres and ECTRs (extrachromosomal telomeric repeats). Some or all of these processes underlie the chaotic telomere length maintenance that allows cells in ALT+ tumours unlimited replicative capacity. ALT activation is also associated with destabilization of a minisatellite, MS32. The connection between the minisatellite instability and the deregulation of recombination-based activity at telomeres is not understood, but analysis of the minisatellite can be used as a marker for ALT. It is known that telomere length maintenance in ALT+ cells is dependent on the MRN [MRE11 (meiotic recombination 11)-Rad50-NBS1 (Nijmegen breakage syndrome 1)] complex, but knowledge of the role of other genes, including the Werner's (WRN) and Bloom's (BLM) syndrome DNA helicase genes, is still limited.


Asunto(s)
Daño del ADN , Recombinación Genética , Telómero/metabolismo , Ácido Anhídrido Hidrolasas , Línea Celular , Senescencia Celular/genética , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11 , Modelos Biológicos , Telómero/genética
15.
Int J Cancer ; 122(11): 2414-21, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18311780

RESUMEN

Immortalized and cancer cells maintain their telomeres by activation of a telomere maintenance mechanism (TMM). In approximately 85% of cancers telomerase is activated (TA) but in some tumours, in particular sarcomas, an alternative lengthening of telomeres (ALT) pathway is used. Liposarcomas are the most common soft-tissue sarcoma in adults and they activate ALT or telomerase with equal frequency, however no TMM has been identified in approximately 50% of liposarcomas. In our study, we have shown that instability at the minisatellite MS32, usually associated with ALT activation, aids the identification of liposarcomas that have recombination-like activity at telomeres in absence of ALT associated PML-bodies (APBs). Furthermore, using single molecule telomere analysis, we have detected complex telomere mutations directly in ALT positive liposarcomas and interestingly in some liposarcomas with an unknown TMM but high MS32 instability. We have shown by sequence analysis that some of these complex telomere mutations must arise by an inter-molecular recombination-like process rather than by deletion caused by t-loop excision or by unequal telomere-sister-chromatid-exchange (T-SCE), which is known to be elevated in ALT cell lines. Preliminary evidence also suggests that inter-molecular recombination events may be processed differently in liposarcomas with APBs compared to those without. In conclusion, we have shown for the first time, that some telomerase negative liposarcomas without APBs have other features associated with ALT, indicating that the incidence of ALT in these tumours has previously been under-estimated. This has major implications for the use of cancer treatments targeted at TMMs.


Asunto(s)
Liposarcoma/ultraestructura , Inestabilidad de Microsatélites , Mutación , Proteínas de Neoplasias , Proteínas Nucleares , Telomerasa/metabolismo , Telómero/genética , Telómero/ultraestructura , Factores de Transcripción , Proteínas Supresoras de Tumor , Línea Celular Tumoral , Activación Enzimática , Humanos , Liposarcoma/enzimología , Liposarcoma/genética , Repeticiones de Minisatélite , Reacción en Cadena de la Polimerasa , Proteína de la Leucemia Promielocítica , Proteínas Recombinantes , Recombinación Genética , Análisis de Secuencia de ADN , Telomerasa/genética , Proteínas de Unión a Telómeros/metabolismo
16.
Nat Cell Biol ; 15(7): 818-28, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23792691

RESUMEN

Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4--a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4--was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.


Asunto(s)
Neoplasias de la Mama/prevención & control , Neoplasias del Colon/prevención & control , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/prevención & control , Sulfotransferasas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Apoptosis , Western Blotting , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Adhesión Celular , Proliferación Celular , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Cartilla de ADN/química , Receptor con Dominio Discoidina 1 , Femenino , Citometría de Flujo , Células HeLa , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Linfocitos Infiltrantes de Tumor/patología , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Desnudos , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfotransferasas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/antagonistas & inhibidores , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Células Tumorales Cultivadas
17.
J Cell Biol ; 179(5): 855-67, 2007 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18056407

RESUMEN

Alternative lengthening of telomere (ALT) tumors maintain telomeres by a telomerase-independent mechanism and are characterized by a nuclear structure called the ALT-associated PML body (APB). TRF2 is a component of a telomeric DNA/protein complex called shelterin. However, TRF2 function in ALT cells remains elusive. In telomerase-positive tumor cells, TRF2 inactivation results in telomere de-protection, activation of ATM, and consequent induction of p53-dependent apoptosis. We show that in ALT cells this sequence of events is different. First, TRF2 inactivation/silencing does not induce cell death in p53-proficient ALT cells, but rather triggers cellular senescence. Second, ATM is constitutively activated in ALT cells and colocalizes with TRF2 into APBs. However, it is only following TRF2 silencing that the ATM target p53 is activated. In this context, PML is indispensable for p53-dependent p21 induction. Finally, we find a substantial loss of telomeric DNA upon stable TRF2 knockdown in ALT cells. Overall, we provide insight into the functional consequences of shelterin alterations in ALT cells.


Asunto(s)
ADN de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ciclo Celular , Línea Celular Tumoral , Senescencia Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA