RESUMEN
Biofilms commonly develop in immunocompromised patients, which leads to persistent infections that are difficult to treat. In the biofilm state, bacteria are protected against both antibiotics and the host's immune system; currently, there are no therapeutics that target biofilms. In this study, we screened a chemical fraction library representing the natural product capacity of the microbiota of marine egg masses, namely, the moon snail egg collars. This led to the identification of active fractions targeting both Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Subsequent analysis revealed that a subset of these fractions were capable of eradicating preformed biofilms, all against S. aureus. Bioassay-guided isolation led us to identify pseudochelin A, a known siderophore, as a S. aureus biofilm inhibitor with an IC50 of 88.5 µM. Mass spectrometry-based metabolomic analyses revealed widespread production of pseudochelin A among fractions possessing S. aureus antibiofilm properties. In addition, a key biosynthetic gene involved in producing pseudochelin A was detected on 30% of the moon snail egg collars and pseudochelin A is capable of inhibiting the formation of biofilms (IC50 50.6 µM) produced by ecologically relevant bacterial strains. We propose that pseudochelin A may have a role in shaping the microbiome or protecting the egg collars from microbiofouling.
Asunto(s)
Antibacterianos , Biopelículas , Pseudomonas aeruginosa , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Estructura Molecular , Microbiota/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Caracoles/microbiología , Sideróforos/farmacología , Sideróforos/química , Biología Marina , Productos Biológicos/farmacología , Productos Biológicos/químicaRESUMEN
Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. Here, we describe (6aR,10aS,10bR)-8,8-dimethyldodecahydropyrrolo[2,1-a]isoquinoline [trans-anti-trans-deoxybuzonamine (1a)] and (rel-6aR,10aR,10bR)-8,8-dimethyldodecahydropyrrolo[2,1-a]isoquinoline [trans-syn-cis-deoxybuzonamine (1b)], two isomers of deoxybuzonamine found in the chemical defense secretions of the millipede Brachycybe lecontii Wood (Colobognatha, Platydesmida, Andrognathidae). The carbon-nitrogen skeleton of these compounds was determined from their MS and GC-FTIR spectra obtained from the MeOH extract of whole millipedes, along with a subsequent selective synthesis. Their structures were established from their 1D (1H, 13C) and 2D NMR (COSY, NOESY, multiplicity-edited HSQC, HSQC-TOCSY, HMBC) spectra. Additionally, computational chemistry (DFT and DP4) was used to identify the relative configurations of 1a and 1b by comparing predicted 13C data to their experimental values, and the absolute configuration of 1a was determined by comparing its experimental specific rotation with that of the computationally calculated value. This is the first report of dodecahydropyrrolo[2,1-a]isoquinoline alkaloids from a platydesmidan millipede.
Asunto(s)
Artrópodos , Animales , Artrópodos/química , Isomerismo , Espectroscopía de Resonancia Magnética , Estructura MolecularRESUMEN
Small molecules frequently mediate symbiotic interactions between microorganisms and their hosts. Brazil harbors the highest diversity of insects in the world; however, just recently, efforts have been directed to deciphering the chemical signals involved in the symbioses of microorganisms and social insects. The current scenario of natural products research guided by chemical ecology is discussed in this review. Two groups of social insects have been prioritized in the studies, fungus-farming ants and stingless bees, leading to the identification of natural products involved in defensive and nutritional symbioses. Some of the compounds also present potential pharmaceutical applications as antimicrobials, and this is likely related to their ecological roles. Microbial symbioses in termites and wasps are suggested promising sources of biologically active small molecules. Aspects related to public policies for insect biodiversity preservation are also highlighted.
Asunto(s)
Insectos , Simbiosis , Animales , Abejas , Brasil , HongosRESUMEN
Social insects establish complex interactions with microorganisms, some of which play defensive roles in colony protection. The important role of pollinators such as the stingless bee Melipona scutellaris in nature encouraged us to pursue efforts to study its associated microbiota. Here we describe the discovery of two novel cyclic hexadepsipeptides, meliponamycin A (1) and meliponamycin B (2), from Streptomyces sp. ICBG1318 isolated from M. scutellaris nurse bees. Their structures were established by interpretation of NMR and MS data, and the absolute configuration of the constituent amino acids was determined by the advanced Marfey's method. Compounds 1 and 2 showed strong activity against the entomopathogen Paenibacillus larvae and human pathogens Staphylococcus aureus and Leishmania infantum.
Asunto(s)
Antiinfecciosos/farmacología , Abejas/microbiología , Streptomyces/química , Animales , Leishmania infantum/efectos de los fármacos , Microbiota , Estructura Molecular , Paenibacillus larvae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacosRESUMEN
Social insects are frequently observed in symbiotic association with bacteria that produce antimicrobial natural products as a defense mechanism. There is a lack of studies on the microbiota associated with stingless bees and their antimicrobial compounds. To the best of our knowledge, this study is the first to report the isolation of Paenibacillus polymyxa ALLI-03-01 from the larval food of the stingless bee Melipona scutellaris. The bacterial strain was cultured under different conditions and produced (L)-(-)-3-phenyllactic acid and fusaricidins, which were active against entomopathogenic fungi and Paenibacillus larvae. Our results indicate that such natural products could be related to colony protection, suggesting a defense symbiosis between P. polymyxa ALLI-03-01 and Melipona scutellaris.
Asunto(s)
Antiinfecciosos/farmacología , Abejas/microbiología , Hongos/efectos de los fármacos , Paenibacillus polymyxa/metabolismo , Animales , Antiinfecciosos/análisis , Antiinfecciosos/metabolismo , Abejas/crecimiento & desarrollo , Depsipéptidos/análisis , Depsipéptidos/metabolismo , Depsipéptidos/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Lactatos/análisis , Lactatos/metabolismo , Lactatos/farmacología , Larva/microbiología , Microbiota , Paenibacillus polymyxa/clasificación , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/aislamiento & purificación , Filogenia , ARN Ribosómico 16S/química , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Untargeted tandem mass spectrometry (MS/MS) is an essential technique in modern analytical chemistry, providing a comprehensive snapshot of chemical entities in complex samples and identifying unknowns through their fragmentation patterns. This high-throughput approach generates large data sets that can be challenging to interpret. Molecular Networks (MNs) have been developed as a computational tool to aid in the organization and visualization of complex chemical space in untargeted mass spectrometry data, thereby supporting comprehensive data analysis and interpretation. MNs group related compounds with potentially similar structures from MS/MS data by calculating all pairwise MS/MS similarities and filtering these connections to produce a MN. Such networks are instrumental in metabolomics for identifying novel metabolites, elucidating metabolic pathways, and even discovering biomarkers for disease. While MS/MS similarity metrics have been explored in the literature, the influence of network topology approaches on MN construction remains unexplored. This manuscript introduces metrics for evaluating MN construction, benchmarks state-of-the-art approaches, and proposes the Transitive Alignments approach to improve MN construction. The Transitive Alignment technique leverages the MN topology to realign MS/MS spectra of related compounds that differ by multiple structural modifications. Combining this Transitive Alignments approach with pseudoclique finding, a method for identifying highly connected groups of nodes in a network, resulted in more complete and higher-quality molecular families. Finally, we also introduce a targeted network construction technique called induced transitive alignments where we demonstrate effectiveness on a real world natural product discovery application. We release this transitive alignment technique as a high-throughput workflow that can be used by the wider research community.
Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Algoritmos , Redes y Vías MetabólicasRESUMEN
Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.
Asunto(s)
Aspergilosis , Gliotoxina , Humanos , Aspergillus fumigatus/metabolismo , Gliotoxina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aspergilosis/microbiologíaRESUMEN
Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. Peroxisomes are also required for proper GT production and self-defense. The Mitogen-Activated Protein (MAP) kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. Our work emphasizes the importance of dynamic compartmentalization of cellular events for GT production and self-defense.
RESUMEN
In the myrmecophytic mutualistic relationship between Azteca ants and Cecropia plants both species receive protection and exchange nutrients. The presence of microorganisms in this symbiotic system has been reported, and the symbiotic role of some fungi involved in the myrmecophytic interactions has been described. In this work we focus on bacteria within this mutualism, conducting isolations and screening for antimicrobial activities, genome sequencing, and biochemical characterization. We show that Pantoea, Rhizobium, Methylobacterium, Streptomyces and Pseudomonas are the most common cultivable genera of bacteria. Interestingly, Pseudomonas spp. isolates showed potent activity against 83% of the pathogens tested in our antimicrobial activity assays, including a phytopathogenic fungus isolated from Cecropia samples. Given the predicted nitrogen limitations associated with the fungal patches within this myrmecophyte, we performed nitrogen fixation analyses on the bacterial isolates within the Proteobacteria and show the potential for nitrogen fixation in Pseudomonas strains. The genome of one Pseudomonas strain was sequenced and analyzed. The gene cluster involved in the biosynthesis of cyclic lipodepsipeptides (CLPs) was identified, and we found mutations that may be related to the loss of function in the dual epimerization/condensation domains. The compound was isolated, and its structure was determined, corresponding to the antifungal viscosinamide. Our findings of diazotrophy and production of viscosinamide in multiple Pseudomonas isolates suggests that this bacterial genus may play an important role in the Cecropia-Azteca symbiosis.