Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8015): 206-213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778111

RESUMEN

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata , Radioisótopos , Radiofármacos , Animales , Humanos , Masculino , Ratones , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Fluoruros/química , Fluoruros/metabolismo , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Terapia Molecular Dirigida/métodos , Proyectos Piloto , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Radiofármacos/química , Radiofármacos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Compuestos de Azufre/química , Compuestos de Azufre/metabolismo , Tirosina/metabolismo , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587639

RESUMEN

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Asunto(s)
Cinesinas , Oocitos , Animales , Ratones , Transporte Biológico , Cinesinas/genética , Meiosis , Metafase
3.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794645

RESUMEN

Pangolins form a group of scaly mammals that are trafficked at record numbers for their meat and purported medicinal properties. Despite their conservation concern, knowledge of their evolution is limited by a paucity of genomic data. We aim to produce exhaustive genomic resources that include 3,238 orthologous genes and whole-genome polymorphisms to assess the evolution of all eight extant pangolin species. Robust orthologous gene-based phylogenies recovered the monophyly of the three genera and highlighted the existence of an undescribed species closely related to Southeast Asian pangolins. Signatures of middle Miocene admixture between an extinct, possibly European, lineage and the ancestor of Southeast Asian pangolins, provide new insights into the early evolutionary history of the group. Demographic trajectories and genome-wide heterozygosity estimates revealed contrasts between continental versus island populations and species lineages, suggesting that conservation planning should consider intraspecific patterns. With the expected loss of genomic diversity from recent, extensive trafficking not yet realized in pangolins, we recommend that populations be genetically surveyed to anticipate any deleterious impact of the illegal trade. Finally, we produce a complete set of genomic resources that will be integral for future conservation management and forensic endeavors for pangolins, including tracing their illegal trade. These comprise the completion of whole-genomes for pangolins through the hybrid assembly of the first reference genome for the giant pangolin (Smutsia gigantea) and new draft genomes (∼43x-77x) for four additional species, as well as a database of orthologous genes with over 3.4 million polymorphic sites.


Asunto(s)
Mamíferos , Pangolines , Animales , Pangolines/genética , Mamíferos/genética , Genoma , Filogenia , Genómica
4.
Mol Carcinog ; 63(5): 977-990, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376344

RESUMEN

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIß. Notably, artificially increasing RhoGDIß levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIß contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIß mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIß expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIß pathway.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Regulación hacia Abajo , Células Epiteliales/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Níquel , Inhibidor beta de Disociación del Nucleótido Guanina rho/antagonistas & inhibidores , Inhibidor beta de Disociación del Nucleótido Guanina rho/genética , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero , Factores de Transcripción SOXB1/genética , Ribonucleoproteína Nuclear Heterogénea D0/genética , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo
5.
Metab Eng ; 84: 158-168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942195

RESUMEN

Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel "PEACES" system by (1) expressing the NAD + kinase gene ppnk from Clostridium glutamicum and the NADP + -dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Ácido Pantoténico , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Pantoténico/biosíntesis , Ácido Pantoténico/metabolismo
6.
Mol Reprod Dev ; 91(6): e23763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895803

RESUMEN

Estrogen is an important hormone that plays a role in regulating follicle development and oocyte maturation. Transzonal projections (TZPs) act as communication bridges between follicle somatic cells and oocytes, and their dynamic changes are critical for oocyte development and maturation. However, the roles and mechanisms of estrogen in regulating TZPs during follicular development are not yet understood. We found that the proportion of oocytes spontaneously resuming meiosis increases as the follicle grows, which is accompanied by rising estrogen levels in follicles and decreasing TZPs in cumulus-oocyte complex. To further explore the effect of elevated estrogen levels on TZP assembly, additional estrogen was added to the culture system. The increased estrogen level significantly decreased the mRNA and protein expression levels of TZP assembly-related genes. Subsequent research revealed that TZP regulation by estrogen was mediated by the membrane receptor GPER and downstream ERK1/2 signaling pathway. In summary, our study suggests that estrogen may regulate goat oocyte meiosis arrest by decreasing TZP numbers via estrogen-mediated GPER activation during follicle development.


Asunto(s)
Células del Cúmulo , Estrógenos , Cabras , Oocitos , Folículo Ovárico , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Animales , Oocitos/metabolismo , Oocitos/citología , Femenino , Células del Cúmulo/metabolismo , Células del Cúmulo/citología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrógenos/metabolismo , Estrógenos/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/citología , Meiosis/fisiología , Sistema de Señalización de MAP Quinasas/fisiología
7.
BMC Cancer ; 24(1): 737, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879516

RESUMEN

BACKGROUND: Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS: The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS: Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS: Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3B , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Estilbenos , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , ARN Largo no Codificante/genética , Línea Celular Tumoral , Estilbenos/farmacología , Estilbenos/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Invasividad Neoplásica , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , MicroARNs/genética
8.
Int J Legal Med ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760564

RESUMEN

BACKGROUND & OBJECTIVE: Sex estimation is a critical aspect of forensic expertise. Some special anatomical structures, such as the maxillary sinus, can still maintain integrity in harsh environmental conditions and may be served as a basis for sex estimation. Due to the complex nature of sex estimation, several studies have been conducted using different machine learning algorithms to improve the accuracy of sex prediction from anatomical measurements. MATERIAL & METHODS: In this study, linear data of the maxillary sinus in the population of northwest China by using Cone-Beam Computed Tomography (CBCT) were collected and utilized to develop logistic, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and random forest (RF) models for sex estimation with R 4.3.1. CBCT images from 477 samples of Han population (75 males and 81 females, aged 5-17 years; 162 males and 159 females, aged 18-72) were used to establish and verify the model. Length (MSL), width (MSW), height (MSH) of both the left and right maxillary sinuses and distance of lateral wall between two maxillary sinuses (distance) were measured. 80% of the data were randomly picked as the training set and others were testing set. Besides, these samples were grouped by age bracket and fitted models as an attempt. RESULTS: Overall, the accuracy of the sex estimation for individuals over 18 years old on the testing set was 77.78%, with a slightly higher accuracy rate for males at 78.12% compared to females at 77.42%. However, accuracy of sex estimation for individuals under 18 was challenging. In comparison to logistic, KNN and SVM, RF exhibited higher accuracy rates. Moreover, incorporating age as a variable improved the accuracy of sex estimation, particularly in the 18-27 age group, where the accuracy rate increased to 88.46%. Meanwhile, all variables showed a linear correlation with age. CONCLUSION: The linear measurements of the maxillary sinus could be a valuable tool for sex estimation in individuals aged 18 and over. A robust RF model has been developed for sex estimation within the Han population residing in the northwestern region of China. The accuracy of sex estimation could be higher when age is used as a predictive variable.

9.
Inorg Chem ; 63(26): 12190-12199, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946342

RESUMEN

Quantum dots (QDs) of metal sulfides were proven to be excellent cocatalysts in visible-light-driven photocatalytic reactions. Metal organic frameworks (MOFs) possess a 3D porous channel that effectively confines small QDs and preserves their high catalytic activity by preventing their aggregation. In order to precisely construct the ternary metal sulfides of ZnS/ZnIn2S4/In2S3 with well-maintained Zn-AgInS2 (ZAIS) QDs, an in situ sulfurization combining a subsequent Zn(II)-exchange strategy was employed in this work. First, the ZAIS QDs were incorporated into MIL-68(In), which were then used as the precursors to precisely construct the ternary metal sulfides of ZnS/ZnIn2S4/In2S3 with well maintained ZAIS QDs through an in situ sulfurization combining subsequent Zn(II)-exchange strategy. When the optimized nanocomposites (QDs@M-t-Zn, where t is the sulfurization time) were applied in visible light-induced photocatalytic hydrogen generation, the resulting QDs@M-24h-Zn showed a significantly improved hydrogen evolution rate of 448.96 µmol g-1 h-1, which values are clearly higher than those of MIL-68(In), QDs@MIL-68(In), and M-24h-Zn without the presence of ZAIS QDs. To elucidate the increased photocatalytic mechanism, the optical patterns and the batch electrochemical investigations were combined. It has been discovered that the matching band potentials and the close contact heterojunction enhance interface charge transfer, which in turn encourages photocatalytic hydrogen production. This study demonstrates the well-thought-out design of the uniform confinement architecture inherited from MOF QD-assisted multinary metal sulfides photocatalysts.

10.
Exp Brain Res ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963560

RESUMEN

Transcranial electrical stimulation (tES) often targets the EEG-guided C3/C4 area that may not accurately represent M1 for hand muscles. This study aimed to determine if the neuroanatomy-based scalp acupuncture-guided site (AC) was a more effective spot than the C3 site for neuromodulation. Fifteen healthy subjects received one 20-minute session of high-definition transcranial alternating current stimulation (HD-tACS) intervention (20 Hz at 2 mA) at the AC or C3 sites randomly with a 1-week washout period. Subjects performed ball-squeezing exercises with the dominant hand during the HD-tACS intervention. The AC site was indiscernible from the finger flexor hotspot detected by TMS. At the baseline, the MEP amplitude from finger flexors was greater with less variability at the AC site than at the C3 site. HD-tACS intervention at the AC site significantly increased the MEP amplitude. However, no significant changes were observed after tACS was applied to the C3 site. Our results provide evidence that HD-tACS at the AC site produces better neuromodulation effects on the flexor digitorum superficialis (FDS) muscle compared to the C3 site. The AC localization approach can be used for future tES studies.

11.
Pediatr Transplant ; 28(4): e14783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767019

RESUMEN

BACKGROUND: We hypothesized that alemtuzumab use is safe in pediatric kidney transplant recipients (KTRs) with equivalent long-term outcomes compared to other induction agents. METHODS: Using pediatric kidney transplant recipient data in the UNOS database between January 1, 2000, and June 30, 2022, multivariate logistic regression, multivariable Cox regression, and survival analyses were utilized to estimate the likelihoods of 1st-year and all-time hospitalizations, acute rejection, CMV infection, delayed graft function (DGF), graft loss, and patient mortality among recipients of three common induction regimens (ATG, alemtuzumab, and basiliximab). RESULTS: There were no differences in acute rejection or graft failure among induction or maintenance regimens. Basiliximab was associated with lower odds of DGF in deceased donor recipients (OR 0.77 [0.60-0.99], p = .04). Mortality was increased in patients treated with steroid-containing maintenance (HR 1.3 [1.005-1.7] p = .045). Alemtuzumab induction correlated with less risk of CMV infection than ATG (OR 0.76 [0.59-0.99], p = .039). Steroid-containing maintenance conferred lower rate of PTLD compared to steroid-free maintenance (HR 0.59 [0.4-0.8] p = .001). Alemtuzumab was associated with less risk of hospitalization within 1 year (OR 0.79 [0.67-0.95] p = .012) and 5 years (HR 0.54 [0.46-0.65] p < .001) of transplantation. Steroid maintenance also decreased 5 years hospitalization risk (HR 0.78 [0.69-0.89] p < .001). CONCLUSIONS: Pediatric KTRs may be safely treated with alemtuzumab induction without increased risk of acute rejection, DGF, graft loss, or patient mortality. The decreased risk of CMV infections and lower hospitalization rates compared to other agents make alemtuzumab an attractive choice for induction in pediatric KTRs, especially in those who cannot tolerate ATG.


Asunto(s)
Alemtuzumab , Basiliximab , Rechazo de Injerto , Hospitalización , Inmunosupresores , Trasplante de Riñón , Humanos , Alemtuzumab/uso terapéutico , Niño , Masculino , Hospitalización/estadística & datos numéricos , Femenino , Rechazo de Injerto/prevención & control , Inmunosupresores/uso terapéutico , Adolescente , Preescolar , Basiliximab/uso terapéutico , Lactante , Supervivencia de Injerto , Suero Antilinfocítico/uso terapéutico , Resultado del Tratamiento , Estudios Retrospectivos , Funcionamiento Retardado del Injerto/epidemiología , Infecciones por Citomegalovirus
12.
J Asthma ; : 1-14, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38478043

RESUMEN

Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.

13.
Environ Res ; 257: 119326, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38849002

RESUMEN

With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.


Asunto(s)
Antibacterianos , Acuicultura , Ganado , Microalgas , Simbiosis , Aguas Residuales , Contaminantes Químicos del Agua , Acuicultura/métodos , Aguas Residuales/química , Aguas Residuales/microbiología , Microalgas/metabolismo , Animales , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental
14.
J Nanobiotechnology ; 22(1): 420, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014462

RESUMEN

Triple negative breast cancer (TNBC) has the characteristics of low immune cell infiltration, high expression of tumor programmed death ligand 1 (PD-L1), and abundant cancer stem cells. Systemic toxicity of traditional chemotherapy drugs due to poor drug selectivity, and chemotherapy failure due to tumor drug resistance and other problems, so it is particularly important to find new cancer treatment strategies for TNBC with limited treatment options. Both the anti-tumor natural drugs curcumin and ginsenoside Rg3 can exert anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells, reducing PD-L1 expression, and reducing cancer stem cells. However, they have the disadvantages of poor water solubility, low bioavailability, and weak anti-tumor effect of single agents. We used vinyl ether bonds to link curcumin (Cur) with N-O type zwitterionic polymers and at the same time encapsulated ginsenoside Rg3 to obtain hyperbranched zwitterionic drug-loaded micelles OPDEA-PGED-5HA@Cur@Rg3 (PPH@CR) with pH response. In vitro cell experiments and in vivo animal experiments have proved that PPH@CR could not only promote the maturation of dendritic cells (DCs) and increase the CD4+ T cells and CD8+ T cells by inducing ICD in tumor cells but also reduce the expression of PD-L1 in tumor tissues, and reduce cancer stem cells and showed better anti-tumor effects and good biological safety compared with free double drugs, which is a promising cancer treatment strategy.


Asunto(s)
Antineoplásicos , Antígeno B7-H1 , Curcumina , Ginsenósidos , Animales , Curcumina/farmacología , Curcumina/química , Ginsenósidos/química , Ginsenósidos/farmacología , Humanos , Concentración de Iones de Hidrógeno , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Femenino , Antígeno B7-H1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Micelas , Ratones Endogámicos BALB C , Polímeros/química , Polímeros/farmacología , Células Dendríticas/efectos de los fármacos , Nanopartículas/química , Células Madre Neoplásicas/efectos de los fármacos , Portadores de Fármacos/química , Óxidos/química , Óxidos/farmacología
15.
Drug Resist Updat ; 66: 100908, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493511

RESUMEN

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Gefitinib/farmacología , Gefitinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
16.
Ecotoxicol Environ Saf ; 271: 115954, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232523

RESUMEN

BACKGROUND: Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS: We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT: Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, ß-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3ß/ß-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3ß/ß-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION: Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/ß-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.


Asunto(s)
Níquel , beta Catenina , Humanos , Níquel/toxicidad , Níquel/metabolismo , beta Catenina/metabolismo , Sestrinas/metabolismo , Regulación hacia Arriba , Transferasas/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Epiteliales/metabolismo , Transformación Celular Neoplásica/genética , ADN/metabolismo , ARN Mensajero/metabolismo , Ubiquitina Tiolesterasa/metabolismo
17.
Pestic Biochem Physiol ; 198: 105727, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225066

RESUMEN

The citrus red mite, Panonychus citri (McGregor), is a globally important pest that has developed severe resistance to various pesticides. Lufenuron has been widely used in the control of the related pests in citrus orchard ecosystem. In this study, the susceptibilities of egg, larva, deutonymph and female adult of P. citri to lufenuron was determined, and the LC50 values were 161.354 mg/L, 49.595 mg/L, 81.580 mg/L, and 147.006 mg/L, respectively. Life-table analysis indicated that the fecundities were significantly increased by 11.86% and 26.84% after the mites were treated with LC20 concentrations of lufenuron at the egg or deutonymph stages, respectively. After eggs were treated with lufenuron, the immature stage and longevity were also affected, and resulted in a significant increase in r, R0 and λ. After exposure of female adults to LC20 of lufenuron, the fecundity and longevity of F0 generation significantly decreased by 31.99% and 10.94%, respectively. Furthermore, the expression level of EcR and Vg was significantly inhibited upon mites was treated with lufenuron. However, lufenuron exposure has a positive effect on fecundity and R0 in F1 generation, the expression of all reproduction-related genes was significantly up-regulated. In conclusion, there was a stimulating effect on the offspring population. Our results will contribute to the assessment of the resurgence of P. citri in the field after the application of lufenuron and the development of integrated pest control strategies in citrus orchards.


Asunto(s)
Benzamidas , Fluorocarburos , Ácaros , Tetranychidae , Animales , Ecosistema , Reproducción
18.
Nano Lett ; 23(5): 1961-1969, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794898

RESUMEN

The prosperous advancement of supramolecular chemistry has motivated us to construct supramolecular hybrid materials with integrated functionalities. Herein, we report an innovative type of macrocycle-strutted coordination microparticle (MSCM) using pillararenes as the struts and "pockets", which performs unique activities of fluorescence-monitored photosensitization and substrate-selective photocatalytic degradation. Prepared via a convenient one-step solvothermal method, MSCM showcases the incorporation of supramolecular hybridization and macrocycles, endowed with well-ordered spherical architectures, superior photophysical properties, and photosensitizing capacity, where a self-reporting fluorescence response is exhibited upon photoinduced generation of multiple reactive oxygen species. Importantly, photocatalytic behaviors of MSCM show marked divergence toward three different substrates and reveal pronounced substrate-selective catalytic mechanisms, attributing to the variety in the affinity of substrates toward MSCM surfaces and pillararene cavities. This study brings new insight into the design of supramolecular hybrid systems with integrated properties and further exploration of functional macrocycle-based materials.

19.
J Environ Manage ; 358: 120743, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626484

RESUMEN

Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Gossypium , Rizosfera , Microbiología del Suelo , Suelo , Dióxido de Carbono/metabolismo , Suelo/química , Carbono/metabolismo , Ciclo del Carbono
20.
BMC Oral Health ; 24(1): 253, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374033

RESUMEN

BACKGROUND: Sex estimate is a key stage in forensic science for identifying individuals. Some anatomical structures may be useful for sex estimation since they retain their integrity even after highly severe events. However, few studies are focusing on the Chinese population. Some researchers used teeth for sex estimation, but comparison with maxillary sinus were lack. As a result, the objective of this research is to develop a sex estimation formula for the northwestern Chinese population by the volume of the maxillary sinus and compare with the accuracy of sex estimation based on teeth through cone-beam computed tomography (CBCT). METHODS: CBCT images from 349 samples were used to establish and verify the formula. The volume of both the left and right maxillary sinuses was measured and examined for appropriate formula coefficients. To create the formula, we randomly picked 80% of the data as the training set and 20% of the samples as the testing set. Another set of samples, including 20 males and 20 females, were used to compare the accuracy of maxillary sinuses and teeth. RESULTS: Overall, sex estimation accuracy by volume of the left maxillary sinus can reach 78.57%, while by the volume of the right maxillary sinus can reach 74.29%. The accuracy for females, which can reach 91.43% using the left maxillary sinus, was significantly higher than that for males, which was 65.71%. The result also shows that maxillary sinus volume was higher in males. The comparison with the available results using measurements of teeth for sex estimation performed by our group showed that the accuracy of sex estimation using canines volume was higher than the one using maxillary sinus volume, the accuracies based on mesiodistal diameter of canine and first molar were the same or lower than the volume of maxillary sinus. CONCLUSIONS: The study demonstrates that measurement of maxillary sinus volume based on CBCT scans was an available and alternative method for sex estimation. And we established a method to accurately assess the sex of the northwest Chinese population. The comparison with the results of teeth measurements made the conclusion more reliable.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Seno Maxilar , Masculino , Femenino , Humanos , Seno Maxilar/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Diente Molar , Maxilar/diagnóstico por imagen , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA