Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38838666

RESUMEN

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Adenosina , Núcleo Celular , Neurogénesis , Neuronas , Proteína I de Unión a Poli(A) , ARN Circular , ARN , ARN Circular/metabolismo , ARN Circular/genética , Neuronas/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/genética , Animales , ARN/metabolismo , ARN/genética , Línea Celular , Diferenciación Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
2.
Nature ; 614(7946): 88-94, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653458

RESUMEN

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

3.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206971

RESUMEN

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Asunto(s)
Estudio de Asociación del Genoma Completo , Privacidad , Humanos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Programas Informáticos , Genómica
4.
Mol Psychiatry ; 29(5): 1253-1264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228891

RESUMEN

The pathophysiology of autism spectrum disorders (ASDs) is causally linked to postsynaptic scaffolding proteins, as evidenced by numerous large-scale genomic studies [1, 2] and in vitro and in vivo neurobiological studies of mutations in animal models [3, 4]. However, due to the distinct phenotypic and genetic heterogeneity observed in ASD patients, individual mutation genes account for only a small proportion (<2%) of cases [1, 5]. Recently, a human genetic study revealed a correlation between de novo variants in FERM domain-containing-5 (FRMD5) and neurodevelopmental abnormalities [6]. In this study, we demonstrate that deficiency of the scaffolding protein FRMD5 leads to neurodevelopmental dysfunction and ASD-like behavior in mice. FRMD5 deficiency results in morphological abnormalities in neurons and synaptic dysfunction in mice. Frmd5-deficient mice display learning and memory dysfunction, impaired social function, and increased repetitive stereotyped behavior. Mechanistically, tandem mass tag (TMT)-labeled quantitative proteomics revealed that FRMD5 deletion affects the distribution of synaptic proteins involved in the pathological process of ASD. Collectively, our findings delineate the critical role of FRMD5 in neurodevelopment and ASD pathophysiology, suggesting potential therapeutic implications for the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista , Modelos Animales de Enfermedad , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Animales , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Masculino , Neuronas/metabolismo , Conducta Animal/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ratones Noqueados , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Ratones Endogámicos C57BL , Conducta Social , Conducta Estereotipada , Sinapsis/metabolismo , Femenino
5.
Nucleic Acids Res ; 51(17): 9144-9165, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37526271

RESUMEN

FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.


Asunto(s)
ADN Helicasas , Replicación del ADN , Recombinasa Rad51 , Humanos , ADN Helicasas/genética , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
6.
Nano Lett ; 24(21): 6441-6449, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757836

RESUMEN

In the realm of condensed matter physics and materials science, charge density waves (CDWs) have emerged as a captivating way to modulate correlated electronic phases and electron oscillations in quantum materials. However, collectively and efficiently tuning CDW order is a formidable challenge. Herein, we introduced a novel way to modulate the CDW order in 1T-TaS2 via stacking engineering. By introducing shear strain during the electrochemical exfoliation, the thermodynamically stable AA-stacked TaS2 consecutively transform into metastable ABC stacking, resulting in unique 3a × 1a CDW order. By decoupling atom coordinates, we atomically deciphered the 3D subtle structural variations in trilayer samples. As suggested by density functional theory (DFT) calculations, the origin of CDWs is presumably due to collective excitations and charge modulation. Therefore, our works shed light on a new avenue to collectively modulate the CDW order via stackingtronics and unveiled novel mechanisms for triggering CDW formation via charge modulation.

7.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751381

RESUMEN

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Asunto(s)
Virus del Mosaico , Virosis , Interferencia de ARN , Triticum/genética , Calmodulina/genética , Virosis/genética , Virus del Mosaico/genética , Enfermedades de las Plantas/genética
8.
Glia ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073200

RESUMEN

Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.

9.
Neurobiol Dis ; 197: 106534, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759931

RESUMEN

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas Mitocondriales , Mitofagia , Neuronas Motoras , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Mitofagia/fisiología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Médula Espinal/metabolismo , Médula Espinal/patología
10.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773389

RESUMEN

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Genes de Plantas , Tolerancia a la Sal/genética
11.
J Neuroinflammation ; 21(1): 29, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246987

RESUMEN

Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Exosomas , MicroARNs , Vaina de Mielina , Animales , Ratones , Exosomas/metabolismo , Microglía/metabolismo , MicroARNs/genética
12.
Small ; : e2400962, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511578

RESUMEN

Bioelectrochemical reactions using whole-cell biocatalysts are promising carbon-neutral approaches because of their easy operation, low cost, and sustainability. Bidirectional (outward or inward) electron transfer via exoelectrogens plays the main role in driving bioelectrochemical reactions. However, the low electron transfer efficiency seriously inhibits bioelectrochemical reaction kinetics. Here, a three dimensional and artificial nanoparticles-constituent inverse opal-indium tin oxide (IO-ITO) electrode is fabricated and employed to connect with exoelectrogens (Shewanella loihica PV-4). The above electrode collected 128-fold higher cell density and exhibited a maximum current output approaching 1.5 mA cm-2 within 24 h at anode mode. By changing the IO-ITO electrode to cathode mode, the exoelectrogens exhibited the attractive ability of extracellular electron uptake to reduce fumarate and 16 times higher reverse current than the commercial carbon electrode. Notably, Fe-containing oxide nanoparticles are biologically synthesized at both sides of the outer cell membrane and probably contributed to direct electron transfer with the transmembrane c-type cytochromes. Owing to the efficient electron exchange via artificial and biosynthetic nanoparticles, bioelectrochemical CO2 reduction is also realized at the cathode. This work not only explored the possibility of augmenting bidirectional electron transfer but also provided a new strategy to boost bioelectrochemical reactions by introducing biohybrid nanoparticles.

13.
J Transl Med ; 22(1): 665, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020378

RESUMEN

Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.


Asunto(s)
Neoplasias de la Mama , Metástasis de la Neoplasia , Receptor ErbB-3 , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-3/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Femenino , Animales
14.
J Transl Med ; 22(1): 215, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424641

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) are the leading cause of death around the world. Most CVDs-related death can be prevented by the optimal management of risk factors such as unhealthy diet and physical inactivity. Clinical practice guidelines (CPGs) for CVDs, provide some evidence-based recommendations which help healthcare professionals to achieve the best care for patients with CVDs. This systematic review aims to appraise the methodological quality of CPGs systematically and summarize the recommendations of self-managed non-pharmacological interventions for the prevention and management of CVDs provided by the selected guidelines. METHODS: A comprehensive electronic literature search was conducted via six databases (PubMed, Medline, The Cochrane Library, Embase, CINAHL, and Web of Science), seven professional heart association websites, and nine guideline repositories. The Appraisal of Guidelines, Research and Evaluation II (AGREE II) instrument was adopted to critically appraise the methodological quality of the selected guidelines. Content analysis was used to summarise recommended self-managed non-pharmacological interventions for CVDs. RESULTS: Twenty-three CPGs regarding different CVDs were included, in which four guidelines of CVDs, three for coronary heart diseases, seven for heart failure, two for atrial fibrillation, three for stroke, three for peripheral arterial disease, and one for hypertrophic cardiomyopathy. Twenty CPGs were appraised as high quality, and three CPGs as moderate quality. All twenty-three CPGs were recommended for use with or without modification. The domain of "Editorial Independence" had the highest standardized percentage (93.47%), whereas the domain of "Applicability" had the lowest mean domain score of 75.41%. The content analysis findings summarised some common self-managed non-pharmacological interventions, which include healthy diet, physical activity, smoking cessation, alcohol control, and weight management. Healthy diet and physical acidity are the most common and agreed on self-managed interventions for patients with CVDs. There are some inconsistencies identified in the details of recommended interventions, the intervention itself, the grade of recommendation, and the supported level of evidence. CONCLUSION: The majority of the summarized non-pharmacological interventions were strongly recommended with moderate to high-quality levels of evidence. Healthcare professionals and researchers can adopt the results of this review to design self-managed non-pharmacological interventions for patients with CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Enfermedad Arterial Periférica , Automanejo , Humanos , Enfermedades Cardiovasculares/terapia , Guías de Práctica Clínica como Asunto
15.
Nat Mater ; 22(12): 1470-1477, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38012388

RESUMEN

Three-dimensional (3D) hetero-integration technology is poised to revolutionize the field of electronics by stacking functional layers vertically, thereby creating novel 3D circuity architectures with high integration density and unparalleled multifunctionality. However, the conventional 3D integration technique involves complex wafer processing and intricate interlayer wiring. Here we demonstrate monolithic 3D integration of two-dimensional, material-based artificial intelligence (AI)-processing hardware with ultimate integrability and multifunctionality. A total of six layers of transistor and memristor arrays were vertically integrated into a 3D nanosystem to perform AI tasks, by peeling and stacking of AI processing layers made from bottom-up synthesized two-dimensional materials. This fully monolithic-3D-integrated AI system substantially reduces processing time, voltage drops, latency and footprint due to its densely packed AI processing layers with dense interlayer connectivity. The successful demonstration of this monolithic-3D-integrated AI system will not only provide a material-level solution for hetero-integration of electronics, but also pave the way for unprecedented multifunctional computing hardware with ultimate parallelism.

16.
Photosynth Res ; 159(2-3): 191-202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37335528

RESUMEN

The objectives of this study were to measure the chlorophyll fluorescence (ChlF) parameters of Barbula indica (Hook.) Spreng and Conocephalum conicum (L.) Dumort subjected to various light intensities (LI) as a reflection of their adaptability to their habitats. The electron transport rate (ETR) of all plants under 500 µmol m-2 s-1 photosynthetic photon flux density (PPFD) was significantly higher than other LI treatments, implying that these plants could be grown under a specific and optimal light intensity adapted to 500 PPFD conditions. As LI increased from 50 to 2,000 PPFD, we observed in all plants increased non-photochemical quenching (NPQ) and photo-inhibitory quenching (qI) and decreased photosystem II efficiency (ΦPSII), potential quantum efficiency of PSII (Fv/Fm), actual PSII efficiency (ΔF/Fm'%), and Fv/Fm%. In addition, energy-dependent quenching (qE), the light protection system (qE + qZ + qT), and qI increased as ΦPSII decreased and photo-inhibition% increased under 1000, 1500, and 2000 PPFD conditions, suggesting that these plants had higher photo-protective ability under high LI treatments to maintain higher photosynthetic system performance. B. indica plants remained photochemically active and maintained higher qE under 300, 500, and 1000 PPFD, whereas C. conicum qZ + qT exhibited higher photo-protection under 500, 1000, and 1500 PPFD conditions. These ChlF indices can be used for predicting photosynthetic responses to light induction in different bryophytes and provide a theoretical basis for ecological monitoring.


Asunto(s)
Clorofila , Hojas de la Planta , Clorofila/fisiología , Hojas de la Planta/fisiología , Fotosíntesis , Luz , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo
17.
Opt Express ; 32(4): 5862-5873, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439302

RESUMEN

Bound states in the continuum (BIC) offer great design freedom for realizing high-quality factor metasurfaces. By deliberately disrupting the inherent symmetries, BIC can degenerate into quasi-BIC exhibiting sharp spectra with strong light confinement. This transformation has been exploited to develop cutting-edge sensors and modulators. However, most proposed quasi-BICs in metasurfaces are composed of unit cells with Cs symmetry that may experience performance degradation due to polarization deviation, posing challenges in practical applications. Addressing this critical issue, our research introduces an innovative approach by incorporating metasurfaces with C4v unit cell symmetry to eliminate polarization response sensitivity. Vanadium Dioxide (VO2) is a phase-change material with a relatively low transition temperature and reversibility. Here, we theoretically investigate the polarization-insensitive quasi-BIC modulation in Si-VO2 hybrid metasurfaces. By introducing defects into metasurfaces with Cs, C4, and C4v symmetries, we enable the emergence of quasi-BICs characterized by strong Fano resonance in their transmission spectra. Via numerically calculating the multipole decomposition, distinct dominant multipoles for different quasi-BICs are identified. A comprehensive investigation into the polarization responses of these structures under varying directions of linearly polarized light reveals the superior polarization-independent characteristics of metasurfaces with C4 and C4v symmetries, a feature that ensures the maintenance of maximum resonance peaks irrespective of polarization direction. Utilizing the polarization-insensitive quasi-BIC, we thus designed two different Si-VO2 hybrid metasurfaces with C4v symmetry. Each configuration presents complementary benefits, leveraging the VO2 phase transition's loss change to facilitate efficient modulation. Our quantitative calculation indicates notable achievements in modulation depth, with a maximum relative modulation depth reaching up to 342%. For the first time, our research demonstrates efficient modulation using polarization-insensitive quasi-BICs in designed Si-VO2 hybrid metasurfaces, achieving identical polarization responses for quasi-BIC-based applications. Our work paves the way for designing polarization-independent quasi-BICs in metasurfaces and marks a notable advancement in the field of tunable integrated devices.

18.
Cancer Cell Int ; 24(1): 268, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068486

RESUMEN

Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.

19.
Org Biomol Chem ; 22(30): 6090-6094, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39005158

RESUMEN

The first amidation of carbazoles at the N9 position via palladium-catalyzed hydroamination of isocyanates is demonstrated. This simple, general and efficient method could deliver a wide range of carbazole-N-carboxamides in up to 99% yield. The salient features of this transformation include simple conditions with no need for a strong base, high chemo- and regio-selectivities and good functional group tolerance. In particular, this work-up-free and chromatography-free protocol is time-saving, cost-effective and user-friendly.

20.
Bioorg Med Chem ; 100: 117631, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330848

RESUMEN

Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Apoptosis , Línea Celular Tumoral , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Piridinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA