Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Bacteriol ; 204(6): e0054021, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543537

RESUMEN

Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacterium from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA, and a cognate class B penicillin-binding protein (PBP), and the class A PBPs (aPBPs). In contrast to laterally growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for in vitro growth. However, RodA contributes to the survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps that of the aPBP PonA1 and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies Mycobacterium smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. IMPORTANCE Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover, the vast majority of bacterial species are unlikely to fit a single paradigm of cell wall assembly because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under nonoptimal conditions and in nonstandard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multilayered envelope. In this work, we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack.


Asunto(s)
Proteínas Bacterianas , Peptidoglicano , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo
2.
PLoS Pathog ; 11(6): e1005010, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26114871

RESUMEN

Cell growth and division are required for the progression of bacterial infections. Most rod-shaped bacteria grow by inserting new cell wall along their mid-section. However, mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce new cell wall material at their poles. How mycobacteria control this different mode of growth is incompletely understood. Here we find that PonA1, a penicillin binding protein (PBP) capable of transglycosylation and transpeptidation of cell wall peptidoglycan (PG), is a major governor of polar growth in mycobacteria. PonA1 is required for growth of Mycobacterium smegmatis and is critical for M. tuberculosis during infection. In both cases, PonA1's catalytic activities are both required for normal cell length, though loss of transglycosylase activity has a more pronounced effect than transpeptidation. Mutations that alter the amount or the activity of PonA1 result in abnormal formation of cell poles and changes in cell length. Moreover, altered PonA1 activity results in dramatic differences in antibiotic susceptibility, suggesting that a balance between the two enzymatic activities of PonA1 is critical for survival. We also find that phosphorylation of a cytoplasmic region of PonA1 is required for normal activity. Mutations in a critical phosphorylated residue affect transglycosylase activity and result in abnormal rates of cell elongation. Together, our data indicate that PonA1 is a central determinant of polar growth in mycobacteria, and its governance of cell elongation is required for robust cell fitness during both host-induced and antibiotic stress.


Asunto(s)
Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Ciclo Celular/fisiología , División Celular/fisiología , Procesos de Crecimiento Celular/genética , Pared Celular/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Proteínas de Unión a las Penicilinas/genética , Fosforilación
3.
Proc Natl Acad Sci U S A ; 111(31): E3243-51, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049412

RESUMEN

Mycobacteria are surrounded by a complex multilayered envelope and elongate at the poles. The principles that organize the coordinated addition of chemically diverse cell wall layers during polar extension remain unclear. We show that enzymes mediating the terminal cytosolic steps of peptidoglycan, arabinogalactan, and mycolic acid synthesis colocalize at sites of cell growth or division. The tropomyosin-like protein, DivIVA, is targeted to the negative curvature of the pole, is enriched at the growing end, and determines cell shape from this site. In contrast, cell wall synthetic complexes are concentrated at a distinct subpolar location. When viewed at subdiffraction resolution, new peptidoglycan is deposited at this subpolar site, and inert cell wall covers the DivIVA-marked tip. The differentiation between polar tip and cell wall synthetic complexes is also apparent at the biochemical level. Enzymes that generate mycolate precursors interact with DivIVA, but the final condensation of mycolic acids occurs in a distinct protein complex at the site of nascent cell wall addition. We propose an ultrastructural model of mycobacterial polar growth where new cell wall is added in an annular zone below the cell tip. This model may be broadly applicable to other bacterial and fungal organisms that grow via polar extension.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Pared Celular/metabolismo , Mycobacterium smegmatis/citología , Mycobacterium smegmatis/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/crecimiento & desarrollo , Ácidos Micólicos/metabolismo , Unión Proteica
4.
J Proteomics ; 296: 105105, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38325731

RESUMEN

Vaccine reactogenicity is well documented at the clinical level but the mechanism involved at the local or systemic level are still poorly understood. Muscular tissue where most vaccines are administered is the first place of interaction between the vaccine formulation and the host's immune cells. So far, this site of vaccine administration is not well documented from a mechanistic standpoint. The study of early molecular events at the injection site is crucial to understand the local response to vaccines. In this paper, we report a standardized workflow, from the injection of vaccine formulations in rabbit muscle, to the analysis by desorption electrospray ionization and histology staining to understand the role of lipids involved in the inflammation and its resolution on striated muscular tissue. The analysis of lipid mediators was optimized at the site of needle insertion to allow the spatial comparison of cellular infiltrates at the injection site. We showed that lipids were distributed across the spatial tissue morphology in a time-dependent manner. The MS imaging applied to vaccinology could pave the way to a better understanding of vaccine reactogenicity and mechanism of action.


Asunto(s)
Vacunación , Vacunas , Animales , Conejos , Espectrometría de Masas , Lípidos , Músculo Esquelético/química , Espectrometría de Masa por Ionización de Electrospray/métodos
5.
J Bacteriol ; 194(3): 587-97, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22123248

RESUMEN

Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The cell wall of these bacteria is composed of a heteropolymer of peptidoglycan (PG) linked to arabinogalactan (AG), which in turn is covalently associated with an atypical outer membrane, here called mycomembrane (M). The latter structure has been visualized by cryo-electron microscopy of vitreous sections, but its biochemical composition is still poorly defined, thereby hampering the elucidation of its physiological function. In this report, we show for the first time that the mycomembrane-linked heteropolymer of PG and AG (M-AG-PG) of C. glutamicum can be physically separated from the inner membrane on a flotation density gradient. Analysis of purified M-AG-PG showed that the lipids that composed the mycomembrane consisted almost exclusively of mycolic acid derivatives, with only a tiny amount, if any, of phospholipids and lipomannans, which were found with the characteristic lipoarabinomannans in the plasma membrane. Proteins associated with or inserted in the mycomembrane were extracted from M-AG-PG with lauryl-dimethylamine-oxide (LDAO), loaded on an SDS-PAGE gel, and analyzed by tandem mass spectrometry or by Western blotting. Sixty-eight different proteins were identified, 19 of which were also found in mycomembrane fragments released by the terminal-arabinosyl-transferase-defective ΔAftB strain. Almost all of them are predicted to contain a signal sequence and to adopt the characteristic ß-barrel structure of Gram-negative outer membrane proteins. These presumed mycomembrane proteins include the already-known pore-forming proteins (PorA and PorB), 5 mycoloyltransferases (cMytA, cMytB, cMytC, cMytD, and cMytF), several lipoproteins, and unknown proteins typified by a putative C-terminal hydrophobic anchor.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/genética , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Espectrometría de Masas , Ácidos Micólicos/análisis
6.
J Biol Chem ; 285(29): 21908-12, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20508265

RESUMEN

O-acylation of proteins was known only in a few eukaryotic proteins but never in bacteria. We demonstrate, using a combination of protein chemistry and mass spectrometry, the occurrence of three O-acylated polypeptides in Corynebacterium glutamicum, PorA, PorH, and an unknown small protein. The three polypeptides are O-substituted by mycolic acids, long chain alpha-alkyl and beta-hydroxy fatty acids specifically produced by members of the Corynebacterineae suborder. To date these acids were described only as esterifying trehalose and arabinogalactan, and less frequently glycerol, important components of the highly impermeable outer barrier of Corynebacterineae. We show that the post-translational mycoloylation of PorA occurs at Ser-15 and is necessary for the pore-forming activity of C. glutamicum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium/metabolismo , Ácidos Micólicos/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Espectrometría de Masas , Datos de Secuencia Molecular , Ácidos Micólicos/química , Porinas/química , Porinas/metabolismo
7.
J Bacteriol ; 192(11): 2691-700, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363942

RESUMEN

Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal beta(1 --> 2)-linked Araf residues. Here we show that Delta aftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a Delta aftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the Delta aftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum.


Asunto(s)
Membrana Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Galactanos/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Membrana Celular/genética , Membrana Celular/ultraestructura , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/ultraestructura , Microscopía por Crioelectrón , Electroforesis en Gel de Poliacrilamida , Galactanos/química , Galactanos/genética , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión
8.
J Bacteriol ; 191(23): 7323-32, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801408

RESUMEN

Corynebacterineae are gram-positive bacteria that possess a true outer membrane composed of mycolic acids and other lipids. Little is known concerning the modulation of mycolic acid composition and content in response to changes in the bacterial environment, especially temperature variations. To address this question, we investigated the function of the Rv3802c gene, a gene conserved in Corynebacterineae and located within a gene cluster involved in mycolic acid biosynthesis. We showed that the Rv3802 ortholog is essential in Mycobacterium smegmatis, while its Corynebacterium glutamicum ortholog, NCgl2775, is not. We provided evidence that the NCgl2775 gene is transcriptionally induced under heat stress conditions, and while the corresponding protein has no detectable activity under normal growth conditions, the increase in its expression triggers an increase in mycolic acid biosynthesis concomitant with a decrease in phospholipid content. We demonstrated that these lipid modifications are part of a larger outer membrane remodeling that occurs in response to exposure to a moderately elevated temperature (42 degrees C). In addition to showing an increase in the ratio of saturated corynomycolates to unsaturated corynomycolates, our results strongly suggested that the balance between mycolic acids and phospholipids is modified inside the outer membrane following a heat challenge. Furthermore, we showed that these lipid modifications help the bacteria to protect against heat damage. The NCgl2775 protein and its orthologs thus appear to be a protein family that plays a role in the regulation of the outer membrane lipid composition of Corynebacterineae under stress conditions. We therefore propose to name this protein family the envelope lipids regulation factor (ElrF) family.


Asunto(s)
Proteínas Bacterianas/fisiología , Corynebacterium glutamicum/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos de la Membrana/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Metabolismo de los Lípidos/genética , Lípidos de la Membrana/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura
9.
Elife ; 72018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29901437

RESUMEN

Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinase Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Mesilato de Imatinib/farmacología , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Aurora Quinasa A/química , Aurora Quinasa A/metabolismo , Cristalografía por Rayos X , Descubrimiento de Drogas/métodos , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/metabolismo , Cinética , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo
10.
Elife ; 52016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27304077

RESUMEN

Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance.


Asunto(s)
Pared Celular/metabolismo , Citoplasma/enzimología , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo , Mycobacterium tuberculosis/genética , N-Acetil Muramoil-L-Alanina Amidasa/genética , Fosforilación , Procesamiento Proteico-Postraduccional
11.
Microbiology (Reading) ; 154(Pt 8): 2315-2326, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18667564

RESUMEN

The major cell wall carbohydrate of Corynebacterineae is arabinogalactan (AG), a branched polysaccharide that is essential for the physiology of these bacteria. Decaprenylphosphoryl-D-arabinose (DPA), the lipid donor of D-arabinofuranosyl residues of AG, is synthesized through a series of unique biosynthetic steps, the last one being the epimerization of decaprenylphosphoryl-beta-D-ribose (DPR) into DPA, which is believed to proceed via a sequential oxidation-reduction mechanism. Two proteins from Mycobacterium tuberculosis (Rv3790 and Rv3791) have been shown to catalyse this epimerization in an in vitro system. The present study addressed the exact function of these proteins through the inactivation of the corresponding orthologues in Corynebacterium glutamicum (NCgl0187 and NCgl0186, respectively) and the analysis of their in vivo effects on AG biosynthesis. We showed that NCgl0187 is essential, whereas NCgl0186 is not. Deletion of NCgl0186 led to a mutant possessing an AG that contained half the arabinose and rhamnose, and less corynomycolates linked to AG but more trehalose mycolates, compared with the parental strain. A candidate gene that may encode a protein functionally similar to NCgl0186 was identified in both C. glutamicum (NCgl1429) and M. tuberculosis (Rv2073c). While the deletion of NCgl1429 had no effect on AG biosynthesis of the mutant, the gene could complement the mycolate defect of the AG of the NCgl0186 mutant, strongly supporting the concept that the two proteins play a similar function in vivo. Consistent with this, the NCgl1429 gene appeared to be essential in the NCgl0186-inactivated mutant. A detailed bioinformatics analysis showed that NCgl1429, NCgl0186, Rv3791 and Rv2073c could constitute, with 52 other proteins belonging to the actinomycetales, a group of closely related short-chain reductases/dehydrogenases (SDRs) with atypical motifs. We propose that the epimerization of DPR to DPA involves three enzymes that catalyse two distinct steps, each being essential for the viability of the bacterial cells.


Asunto(s)
Arabinosa/biosíntesis , Pared Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Polisacáridos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Pared Celular/química , Pared Celular/enzimología , Pared Celular/genética , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Galactanos/metabolismo , Genoma Bacteriano , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Alineación de Secuencia
12.
Microbiology (Reading) ; 153(Pt 5): 1424-1434, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17464056

RESUMEN

Recently, it has been shown that trehalose and mycolic acids are essential for the growth of Mycobacterium tuberculosis, the causative agent of tuberculosis, and Mycobacterium smegmatis, and important but not indispensable to the survival of Corynebacterium glutamicum. Therefore, to investigate the function of mycolic acids in both the permeability of the cell wall to small nutrients and antibiotics, and the excretion of amino acids by C. glutamicum, a trehalose-deficient mutant of the L-lysine producer ATCC 21527, designated LP Delta treS Delta otsA Delta treY, was constructed. By using different carbon sources in either the presence or the absence of external trehalose, a set of endogenously trehalose-free LP Delta treS Delta otsA Delta treY cells that exhibited various mycolate contents was generated. The results showed that the structure of the arabinogalactan of these different cell types of LP Delta treS Delta otsA Delta treY was not affected when the mycolic acid layer was either missing or impaired. Nevertheless, cells were more susceptible to antibiotics, and the permeability of their cell walls to glycerol was increased. Interestingly, a concomitant increase in the excretion of both L-lysine and L-glutamate was also observed, indicating that the mycolic acid content of the permeability barrier (and not only the peptidoglycan and/or the arabinogalactan) is implicated in the glutamate excretion process.


Asunto(s)
Pared Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Trehalosa/metabolismo , Aminoácidos/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Galactanos/química , Eliminación de Gen , Glucosiltransferasas/genética , Ácido Glutámico/metabolismo , Glicerol/metabolismo , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Permeabilidad
13.
J Biol Chem ; 280(28): 26573-85, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15901732

RESUMEN

Trehalose (alpha-D-glucopyranosyl-alpha'-D-glucopyranoside) is essential for the growth of the human pathogen Mycobacterium tuberculosis but not for the viability of the phylogenetically related corynebacteria. To determine the role of trehalose in the physiology of these bacteria, the so-called Corynebacterineae, mutant strains of Corynebacterium glutamicum unable to synthesize trehalose due to the knock-out of the genes of the three pathways of trehalose biosynthesis, were biochemically analyzed. We demonstrated that the synthesis of trehalose under standard conditions is a prerequisite for the production of mycolates, major and structurally important constituents of the cell envelope of Corynebacterineae. Consistently, the trehalose-less cells also lack the cell wall fracture plane that typifies mycolate-containing bacteria. Importantly, however, the mutants were able to synthesize mycolates when grown on glucose, maltose, and maltotriose but not on other carbon sources known to be used for the production of internal glucose phosphate such as fructose, acetate, and pyruvate. The mycoloyl residues synthesized by the mutants grown on alpha-D-glucopyranosyl-containing oligosaccharides were transferred both onto the cell wall and free sugar acceptors. A combination of chemical analytical approaches showed that the newly synthesized glycolipids consisted of 1 mol of mycolate located on carbon 6 of the non reducing glucopyranosyl unit. Additionally, experiments with radioactively labeled trehalose showed that the transfer of mycoloyl residues onto sugars occurs outside the plasma membrane. Finally, and in contradiction to published data, we demonstrated that trehalose 6-phosphate has no impact on mycolate synthesis in vivo.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/química , Oligosacáridos/química , Trehalosa/fisiología , Betaína/química , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Sistema Libre de Células/metabolismo , Cromatografía en Capa Delgada , Clonación Molecular , Medios de Cultivo/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Ácidos Grasos/metabolismo , Técnica de Fractura por Congelación , Glucosa/metabolismo , Glucolípidos/química , Lípidos/química , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Modelos Biológicos , Modelos Químicos , Mutación , Mycobacterium tuberculosis/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fosfatos de Azúcar/química , Trehalosa/análogos & derivados , Trehalosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA