Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758338

RESUMEN

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Asunto(s)
Hipocampo/metabolismo , Interleucina-6/biosíntesis , Exposición Materna , Neuronas/metabolismo , Efectos Tardíos de la Exposición Prenatal , Sinapsis/metabolismo , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Hipocampo/fisiopatología , Mediadores de Inflamación/metabolismo , Ratones , Embarazo , Transducción de Señal , Transmisión Sináptica
2.
EMBO J ; 42(13): e113796, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37161785

RESUMEN

In the last two decades, the term synaptopathy has been largely used to underline the concept that impairments of synaptic structure and function are the major determinant of brain disorders, including neurodevelopmental disorders. This notion emerged from the progress made in understanding the genetic architecture of neurodevelopmental disorders, which highlighted the convergence of genetic risk factors onto molecular pathways specifically localized at the synapse. However, the multifactorial origin of these disorders also indicated the key contribution of environmental factors. It is well recognized that inflammation is a risk factor for neurodevelopmental disorders, and several immune molecules critically contribute to synaptic dysfunction. In the present review, we highlight this concept, which we define by the term "immune-synaptopathy," and we discuss recent evidence suggesting a bi-directional link between the genetic architecture of individuals and maternal activation of the immune system in modulating brain developmental trajectories in health and disease.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Sinapsis/metabolismo , Familia
3.
Immunity ; 48(5): 979-991.e8, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752066

RESUMEN

The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2-/- mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.


Asunto(s)
Encéfalo/inmunología , Glicoproteínas de Membrana/inmunología , Microglía/inmunología , Neuronas/inmunología , Receptores Inmunológicos/inmunología , Sinapsis/inmunología , Animales , Trastorno Autístico/genética , Trastorno Autístico/inmunología , Trastorno Autístico/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/inmunología
4.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38102070

RESUMEN

Mass spectrometry imaging (MSI) is commonly used to map the spatial distribution of small molecules within complex biological matrices. One of the major challenges in imaging MS-based spatial metabolomics is molecular identification and metabolite annotation, to address this limitation, annotation is often complemented with parallel bulk LC-MS2-based metabolomics to confirm and validate identifications. Here we applied MSI method, utilizing data-dependent acquisition, to visualize and identify unknown molecules in a single instrument run. To reach this aim we developed MSIpixel, a fully automated pipeline for compound annotation and quantitation in MSI experiments. It overcomes challenges in molecular identification, and improving reliability and comprehensiveness in MSI-based spatial metabolomics.


Asunto(s)
Metabolómica , Reproducibilidad de los Resultados , Espectrometría de Masas , Metabolómica/métodos
5.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30396995

RESUMEN

Control of synapse number and function in the developing central nervous system is critical to the formation of neural circuits. Astrocytes play a key role in this process by releasing factors that promote the formation of excitatory synapses. Astrocyte-secreted thrombospondins (TSPs) induce the formation of structural synapses, which however remain post-synaptically silent, suggesting that completion of early synaptogenesis may require a two-step mechanism. Here, we show that the humoral innate immune molecule Pentraxin 3 (PTX3) is expressed in the developing rodent brain. PTX3 plays a key role in promoting functionally-active CNS synapses, by increasing the surface levels and synaptic clustering of AMPA glutamate receptors. This process involves tumor necrosis factor-induced protein 6 (TSG6), remodeling of the perineuronal network, and a ß1-integrin/ERK pathway. Furthermore, PTX3 activity is regulated by TSP1, which directly interacts with the N-terminal region of PTX3. These data unveil a fundamental role of PTX3 in promoting the first wave of synaptogenesis, and show that interplay of TSP1 and PTX3 sets the proper balance between synaptic growth and synapse function in the developing brain.


Asunto(s)
Proteína C-Reactiva/fisiología , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Proteínas del Tejido Nervioso/fisiología , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Astrocitos/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteína C-Reactiva/genética , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Matriz Extracelular/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Transporte de Proteínas/genética , Trombospondina 1/metabolismo
6.
J Transl Med ; 19(1): 315, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34289870

RESUMEN

BACKGROUND: Sarcopenia is a loss of muscle mass and strength causing disability, morbidity, and mortality in older adults, which is characterized by alterations of the neuromuscular junctions (NMJs). SNAP-25 is essential for the maintenance of NMJ integrity, and the expression of this protein was shown to be modulated by the SNAP-25 rs363050 polymorphism and by a number of miRNAs. METHODS: We analysed these parameters in a cohort of sarcopenic patients undergoing structured rehabilitation. The rs363050 genotype frequency distribution was analyzed in 177 sarcopenic patients and 181 healthy controls (HC). The concentration of seven miRNAs (miR-451a, miR-425-5p, miR155-5p, miR-421-3p, miR-495-3p, miR-744-5p and miR-93-5p), identified by mouse brain miRNome analysis to be differentially expressed in wild type compared to SNAP-25± heterozygous mice, was analyzed as well by droplet digital PCR (ddPCR) in a subgroup of severe sarcopenic patients undergoing rehabilitation. RESULTS: The SNAP-25 rs363050 AA genotype was significantly more common in sarcopenic patients compared to HC (pc = 0.01); miR-451a was significantly up-regulated in these patients before rehabilitation. Rehabilitation modified miRNAs expression, as miR-155-5p, miR-421-3p, miR-451a, miR-425-5p, miR-744-5p and miR-93-5p expression was significantly up-regulated (p < 0.01), whereas that of miR-495-3p was significantly down-regulated (p < 0.001) by rehabilitation. Notably, rehabilitation-associated improvement of the muscle-skeletal SPPB score was significantly associated with the reduction of miR-451a expression. CONCLUSION: These results support the hypothesis of a role for SNAP-25 in sarcopenia and suggest SNAP-25-associated miRNAs as circulatory biomarkers of rehabilitative outcome for sarcopenia.


Asunto(s)
MicroARNs , Sarcopenia , Anciano , Animales , Biomarcadores , Perfilación de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Músculos , Polimorfismo de Nucleótido Simple/genética , Sarcopenia/genética , Proteína 25 Asociada a Sinaptosomas
7.
Cereb Cortex ; 29(1): 91-105, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161354

RESUMEN

The neuronal scaffold protein p140Cap was investigated during hippocampal network formation. p140Cap is present in presynaptic GABAergic terminals and its genetic depletion results in a marked alteration of inhibitory synaptic activity. p140Cap-/- cultured neurons display higher frequency of miniature inhibitory postsynaptic currents (mIPSCs) with no changes of their mean amplitude. Consistent with a potential presynaptic alteration of basal GABA release, p140Cap-/- neurons exhibit a larger synaptic vesicle readily releasable pool, without any variation of single GABAA receptor unitary currents and number of postsynaptic channels. Furthermore, p140Cap-/- neurons show a premature and enhanced network synchronization and appear more susceptible to 4-aminopyridine-induced seizures in vitro and to kainate-induced seizures in vivo. The hippocampus of p140Cap-/- mice showed a significant increase in the number of both inhibitory synapses and of parvalbumin- and somatostatin-expressing interneurons. Specific deletion of p140Cap in forebrain interneurons resulted in increased susceptibility to in vitro epileptic events and increased inhibitory synaptogenesis, comparable to those observed in p140Cap-/- mice. Altogether, our data demonstrate that p140Cap finely tunes inhibitory synaptogenesis and GABAergic neurotransmission, thus regulating the establishment and maintenance of the proper hippocampal excitatory/inhibitory balance.


Asunto(s)
Proteínas Portadoras/fisiología , Neuronas GABAérgicas/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Potenciales Postsinápticos Inhibidores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
8.
J Neurosci ; 36(16): 4624-34, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098703

RESUMEN

Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca(2+)-independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. SIGNIFICANCE STATEMENT: Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission.


Asunto(s)
Lisofosfolípidos/fisiología , Terminales Presinápticos/metabolismo , Esfingosina/análogos & derivados , Sinapsis/metabolismo , Sinapsinas/biosíntesis , Animales , Células Cultivadas , Femenino , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terminales Presinápticos/química , Ratas , Ratas Sprague-Dawley , Esfingosina/análisis , Esfingosina/fisiología , Sinapsis/química , Sinapsinas/análisis
9.
EMBO J ; 32(12): 1730-44, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23685357

RESUMEN

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Cognición/fisiología , Espinas Dendríticas/genética , Humanos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Sinapsis/genética
10.
J Cell Sci ; 128(9): 1669-73, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25749864

RESUMEN

In adult neocortex, VGLUT1 (also known as SLC17A7), the main glutamate vesicular transporter, and VGAT (also known as SLC32A1), the γ-aminobutyric acid (GABA) vesicular transporter, are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, where they are sorted into the same vesicles. However, the functional consequence of this colocalization in cortical neurons has not been clarified. Here, we tested the hypothesis that cortical axon terminals co-expressing VGLUT1 and VGAT can evoke simultaneously monosynaptic glutamate and GABA responses, and investigated whether the amount of terminals co-expressing VGLUT1 and VGAT is affected by perturbations of excitation-inhibition balance. In rat primary cortical neurons, we found that a proportion of synaptic and autaptic responses were indeed sensitive to consecutive application of selective glutamate and GABAA receptor blockers. These 'mixed' synapses exhibited paired-pulse depression. Notably, reducing the activity of the neuronal network by treatment with glutamate receptor antagonists decreased the amount of 'mixed' synapses, whereas reducing spontaneous inhibition by treatment with bicuculline increased them. These synapses might contribute to homeostatic regulation of excitation-inhibition balance.


Asunto(s)
Corteza Cerebral/citología , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción , Animales , Interneuronas/fisiología , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Sinapsis/metabolismo
11.
Cereb Cortex ; 26(10): 3879-88, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166172

RESUMEN

The capacity to guarantee the proper excitatory/inhibitory balance is one of the most critical steps during early development responsible for the correct brain organization, function, and plasticity. GABAergic neurons guide this process leading to the right structural organization, brain circuitry, and neuronal firing. Here, we identified the ataxia telangiectasia mutated (ATM), a serine/threonine protein kinase linked to DNA damage response, as crucial in regulating neurotransmission. We found that reduced levels of ATM in the hippocampal neuronal cultures produce an excitatory/inhibitory unbalance toward inhibition as indicated by the higher frequency of miniature inhibitory postsynaptic current events and an increased number of GABAergic synapses. In vivo, the increased inhibition still persists and, even if a higher excitation is also present, a reduced neuronal excitability is found as indicated by the lower action potential frequency generated in response to high-current intensity stimuli. Finally, we found an elevated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in heterozygous hippocampi associated with lower expression levels of the ERK1/2 phosphatase PP1. Given that the neurodegenerative condition associated with genetic mutations in the Atm gene, ataxia telangiectasia, presents a variable phenotype with impairment in cognition, our molecular findings provide a logical frame for a more clear comprehension of cognitive defects in the pathology, opening to novel therapeutic strategies.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/citología , Hipocampo/embriología , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/citología , Fosforilación , Simportadores/metabolismo , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/administración & dosificación , Cotransportadores de K Cl
12.
EMBO Rep ; 14(7): 645-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23732542

RESUMEN

SNAP-25 is a key component of the synaptic-vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP-25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP-25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We show that, unexpectedly, halved SNAP-25 levels at 13-14 DIV not only fail to impair synaptic transmission but instead enhance evoked glutamatergic neurotransmission. This effect is possibly dependent on presynaptic voltage-gated calcium channel activity and is not accompanied by changes in spontaneous quantal events or in the pool of readily releasable synaptic vesicles. Notably, synapses of 13-14 DIV neurons with reduced SNAP-25 expression show paired-pulse depression as opposed to paired-pulse facilitation occurring in their wild-type counterparts. This phenotype disappears with synapse maturation. As alterations in short-term plasticity represent a new mechanism contributing to cognitive impairments in intellectual disabilities, our data provide mechanistic clues for neuronal circuit alterations in psychiatric diseases characterized by reduced expression of SNAP-25.


Asunto(s)
Ácido Glutámico/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Proteína 25 Asociada a Sinaptosomas/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Humanos , Ratones , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología , Proteína 25 Asociada a Sinaptosomas/antagonistas & inhibidores , Proteína 25 Asociada a Sinaptosomas/genética , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
13.
Cereb Cortex ; 23(3): 531-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22402347

RESUMEN

Activation of protein kinase A (PKA) pathway at presynaptic terminals plays a crucial role in the supply of synaptic vesicles (SVs) from the reserve pool, affecting the steady-state level of activity and the reconstitution of the readily releasable pool after intense stimulation. However, the identity of the stimuli activating this pathway is undefined. Using fluorescence resonance energy transfer and molecular genetic, we show that kainate, through the activation of presynaptic kainate receptors, induces PKA activation and enhances synapsin I phosphorylation at PKA-specific residues. This leads to a dispersion of synapsin I immunoreactivity, which is accompanied by a PKA-dependent increase in the rate of SV recycling at the growth cone and by an enhanced miniature excitatory postsynaptic currents frequency in mature networks. Selective activation of this pathway is induced by the native neurotransmitter glutamate, when applied in the high nanomolar range. These data identify glutamate, specifically acting on KARs, as one of the stimuli able to induce phosphorylation of synapsin at PKA sites, both at the axonal growth cone and at the mature synapse, thus increasing SV availability and contributing to plasticity phenomena.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Conos de Crecimiento/fisiología , Plasticidad Neuronal/fisiología , Receptores de Ácido Kaínico/metabolismo , Vesículas Sinápticas/fisiología , Animales , Células Cultivadas , Activación Enzimática/fisiología , Agonistas de Aminoácidos Excitadores/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Inmunohistoquímica , Ácido Kaínico/metabolismo , Ácido Kaínico/farmacología , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Sinapsinas/metabolismo
14.
EMBO J ; 28(8): 1043-54, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19300439

RESUMEN

We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1beta, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1beta release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1beta release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1beta release, thus, opening new strategies for the treatment of neuroinflammatory diseases.


Asunto(s)
Micropartículas Derivadas de Células/enzimología , Neuroglía/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Inhibidores de Captación Adrenérgica/metabolismo , Marcadores de Afinidad/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Micropartículas Derivadas de Células/ultraestructura , Células Cultivadas , Activación Enzimática , Imipramina/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Neuroglía/citología , Tamaño de la Partícula , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Transducción de Señal/fisiología , Esfingomielina Fosfodiesterasa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
16.
PLoS Biol ; 7(6): e1000138, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19564905

RESUMEN

The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas del Citoesqueleto/metabolismo , Neuronas/efectos de los fármacos , Seudópodos/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/metabolismo , Axones/fisiología , Línea Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Interferencia de ARN , Ratas , Transfección
17.
PLoS Comput Biol ; 7(7): e1002088, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21814501

RESUMEN

There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia.


Asunto(s)
Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Células HeLa , Hipocampo/citología , Histocitoquímica , Humanos , Immunoblotting , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Neuronas/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/fisiología
18.
Eur J Neurosci ; 34(10): 1655-62, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22103422

RESUMEN

Actin-capping and anti-capping proteins are crucial regulators of actin dynamics. Recent studies have indicated that these proteins may be heavily involved in all stages of synaptogenesis, from the emergence of filopodia, through neuritogenesis and synaptic contact stabilization, to the structural changes occurring at the synapse during potentiation phenomena. In this review, we focus on recent evidence pointing to an active role of actin-capping and anti-capping proteins in orchestrating the processes controlling neuronal connectivity and plasticity.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Actinas/metabolismo , Seudópodos/metabolismo , Sinapsis/metabolismo , Proteínas de Capping de la Actina/genética , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Seudópodos/ultraestructura , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33373327

RESUMEN

Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Reparación del ADN , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Inhibidores de Proteínas Quinasas/farmacología , Pironas/farmacología , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/fisiopatología , Síndrome de Rett/psicología , Simportadores/genética , Simportadores/metabolismo , Ácido Valproico/toxicidad , Cotransportadores de K Cl
20.
Cells ; 9(10)2020 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993090

RESUMEN

Astrocytes are essential players in brain circuit development and homeostasis, controlling many aspects of synapse formation, function, plasticity and elimination both during development and adulthood. Accordingly, alterations in astrocyte morphogenesis and physiology may severely affect proper brain development, causing neurological or neuropsychiatric conditions. Recent findings revealed a huge astrocyte heterogeneity among different brain areas, which is likely at the foundation of the different synaptogenic potential of these cells in selected brain regions. This review highlights recent findings on novel mechanisms that regulate astrocyte-mediated synaptogenesis during development, and the control of synapse number in the critical period or upon synaptic plasticity.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/crecimiento & desarrollo , Plasticidad Neuronal/genética , Sinapsis/genética , Encéfalo/metabolismo , Humanos , Neurogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA