Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37112159

RESUMEN

Late blight, caused by Phytophthora infestans, is a major disease of the potato crop with a strong negative impact on tuber yield and tuber quality. The control of late blight in conventional potato production systems is often through weekly application of prophylactic fungicides, moving away from a sustainable production system. In support of integrated pest management practices, machine learning algorithms were proposed as tools to forecast aerobiological risk level (ARL) of Phytophthora infestans (>10 sporangia/m3) as inoculum to new infections. For this, meteorological and aerobiological data were monitored during five potato crop seasons in Galicia (northwest Spain). Mild temperatures (T) and high relative humidity (RH) were predominant during the foliar development (FD), coinciding with higher presence of sporangia in this phenological stage. The infection pressure (IP), wind, escape or leaf wetness (LW) of the same day also were significantly correlated with sporangia according to Spearman's correlation test. ML algorithms such as random forest (RF) and C5.0 decision tree (C5.0) were successfully used to predict daily sporangia levels, with an accuracy of the models of 87% and 85%, respectively. Currently, existing late blight forecasting systems assume a constant presence of critical inoculum. Therefore, ML algorithms offer the possibility of predicting critical levels of Phytophthora infestans concentration. The inclusion of this type of information in forecasting systems would increase the exactitude in the estimation of the sporangia of this potato pathogen.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Bosques Aleatorios , Estaciones del Año , Temperatura , Enfermedades de las Plantas
2.
Sensors (Basel) ; 22(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36146412

RESUMEN

Secondary infections of early blight during potato crop season are conditioned by aerial inoculum. However, although aerobiological studies have focused on understanding the key factors that influence the spore concentration in the air, less work has been carried out to predict when critical concentrations of conidia occur. Therefore, the goals of this study were to understand the key weather variables that affect the hourly and daily conidia dispersal of Alternaria solani and A. alternata in a potato field, and to use these weather factors in different machine learning (ML) algorithms to predict the daily conidia levels. This study showed that conidia per hour in a day is influenced by the weather conditions that characterize the hour, but not the hour of the day. Specifically, the relative humidity and solar radiation were the most relevant weather parameters influencing the conidia concentration in the air and both in a linear model explained 98% of the variation of this concentration per hour. Moreover, the dew point temperature three days before was the weather variable with the strongest effect on conidia per day. An improved prediction of Alternaria conidia level was achieved via ML algorithms when the conidia of previous days is considered in the analysis. Among the ML algorithms applied, the CART model with an accuracy of 86% were the best to predict daily conidia level.


Asunto(s)
Alternaria , Solanum tuberosum , Algoritmos , Aprendizaje Automático , Esporas Fúngicas
3.
Sensors (Basel) ; 21(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34960316

RESUMEN

The aim of the present work was to determine the main quality parameters on tuber potato using a portable near-infrared spectroscopy device (MicroNIR). Potato tubers protected by the Protected Geographical Indication (PGI "Patata de Galicia", Spain) were analyzed both using chemical methods of reference and also using the NIR methodology for the determination of important parameters for tuber commercialization, such as dry matter and reducing sugars. MicroNIR technology allows for the attainment/estimation of dry matter and reducing sugars in the warehouses by directly measuring the tubers without a chemical treatment and destruction of samples. The principal component analysis and modified partial least squares regression method were used to develop the NIR calibration model. The best determination coefficients obtained for dry matter and reducing sugars were of 0.72 and 0.55, respectively, and with acceptable standard errors of cross-validation. Near-infrared spectroscopy was established as an effective tool to obtain prediction equations of these potato quality parameters. At the same time, the efficiency of portable devices for taking instantaneous measurements of crucial quality parameters is useful for potato processors.


Asunto(s)
Solanum tuberosum , Calibración , Análisis de los Mínimos Cuadrados , Tubérculos de la Planta , Espectroscopía Infrarroja Corta
4.
Animals (Basel) ; 13(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37835643

RESUMEN

Vespa velutina is an invasive species that exhibits flexible social behavior, which may have contributed to its introduction in several European countries. It is important to understand its behavior in order to combat the effects of its introduction in different areas. This implies knowing the resources that it uses during its biological cycle. Hornets require protein resources taken from insects and organic matter as well as carbohydrates as an energy source to fly and also to forage for food and nest-building materials. The gastrointestinal tract of adults and larvae contains a wide variety of pollen types. The identification of this pollen in larvae collected from nests could offer information about the plant species that V. velutina visits as a foraging place. The main objective of this research was to study the pollen content in the gastrointestinal tract of larvae. Patterns of pollen content and pollen diversity were established according to the nest type, altitude, season, and location in the nest comb. The abundance of pollen types such as Eucalyptus, Castanea, Foeniculum vulgare, Hedera helix, Taraxacum officinale, Echium, or Cytisus pollen type stands out in many of the samples.

5.
Foods ; 10(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546316

RESUMEN

There is an increase in the consumption of natural foods with healthy benefits such as honey. The physicochemical composition contributes to the particularities of honey that differ depending on the botanical origin. Botanical and geographical declaration protects consumers from possible fraud and ensures the quality of the product. The objective of this study was to develop prediction models using a portable near-Infrared (MicroNIR) Spectroscopy to contribute to authenticate honeys from Northwest Spain. Based on reference physicochemical analyses of honey, prediction equations using principal components analysis and partial least square regression were developed. Statistical descriptors were good for moisture, hydroxymethylfurfural (HMF), color (Pfund, L and b* coordinates of CIELab) and flavonoids (RSQ > 0.75; RPD > 2.0), and acceptable for electrical conductivity (EC), pH and phenols (RSQ > 0.61; RDP > 1.5). Linear discriminant analysis correctly classified the 88.1% of honeys based on physicochemical parameters and botanical origin (heather, chestnut, eucalyptus, blackberry, honeydew, multifloral). Estimation of quality and physicochemical properties of honey with NIR-spectra data and chemometrics proves to be a powerful tool to fulfil quality goals of this bee product. Results supported that the portable spectroscopy devices provided an effective tool for the apicultural sector to rapid in-situ classification and authentication of honey.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA