Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther Oncol ; 32(3): 200834, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39045029

RESUMEN

Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.

2.
Stem Cell Rev Rep ; 18(7): 2474-2493, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35441348

RESUMEN

The spread of non-small cell lung cancer (NSCLC) to the leptomeninges is devastating with a median survival of only a few months. Radiation offers symptomatic relief, but new adjuvant therapies are desperately needed. Spheroidal, human induced neural stem cells (hiNeuroS) secreting the cytotoxic protein, TRAIL, have innate tumoritropic properties. Herein, we provide evidence that hiNeuroS-TRAIL cells can migrate to and suppress growth of NSCLC metastases in combination with radiation. In vitro cell tracking and post-mortem tissue analysis showed that hiNeuroS-TRAIL cells migrate to NSCLC tumors. Importantly, isobolographic analysis suggests that TRAIL with radiation has a synergistic cytotoxic effect on NSCLC tumors. In vivo, mice treated with radiation and hiNeuroS-TRAIL showed significant (36.6%) improvements in median survival compared to controls. Finally, bulk mRNA sequencing analysis showed both NSCLC and hiNeuroS-TRAIL cells showed changes in genes involved in migration following radiation. Overall, hiNeuroS-TRAIL cells +/- radiation have the capacity to treat NSCLC metastases.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células-Madre Neurales , Animales , Antineoplásicos/farmacología , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Ratones , Células-Madre Neurales/metabolismo , ARN Mensajero , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
3.
Stem Cell Rev Rep ; 17(6): 2025-2041, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34138421

RESUMEN

Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Células Madre
4.
Mol Cancer Ther ; 20(11): 2291-2301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433662

RESUMEN

Converting human fibroblasts into personalized induced neural stem cells (hiNSC) that actively seek out tumors and deliver cytotoxic agents is a promising approach for treating cancer. Herein, we provide the first evidence that intravenously-infused hiNSCs secreting cytotoxic agent home to and suppress the growth of non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). Migration of hiNSCs to NSCLC and TNBC in vitro was investigated using time-lapse motion analysis, which showed directional movement of hiNSCs to both tumor cell lines. In vivo, migration of intravenous hiNSCs to orthotopic NSCLC or TNBC tumors was determined using bioluminescent imaging (BLI) and immunofluorescent post-mortem tissue analysis, which indicated that hiNSCs colocalized with tumors within 3 days of intravenous administration and persisted through 14 days. In vitro, efficacy of hiNSCs releasing cytotoxic TRAIL (hiNSC-TRAIL) was monitored using kinetic imaging of co-cultures, in which hiNSC-TRAIL therapy induced rapid killing of both NSCLC and TNBC. Efficacy was determined in vivo by infusing hiNSC-TRAIL or control cells intravenously into mice bearing orthotopic NSCLC or TNBC and tracking changes in tumor volume using BLI. Mice treated with intravenous hiNSC-TRAIL showed a 70% or 72% reduction in NSCLC or TNBC tumor volume compared with controls within 14 or 21 days, respectively. Safety was assessed by hematology, blood chemistry, and histology, and no significant changes in these safety parameters was observed through 28 days. These results indicate that intravenous hiNSCs-TRAIL seek out and kill NSCLC and TNBC tumors, suggesting a potential new strategy for treating aggressive peripheral cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Células-Madre Neurales/trasplante , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Humanos , Ratones
5.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108203

RESUMEN

Engineered tumor-homing neural stem cells (NSCs) have shown promise in treating cancer. Recently, we transdifferentiated skin fibroblasts into human-induced NSCs (hiNSC) as personalized NSC drug carriers. Here, using a SOX2 and spheroidal culture-based reprogramming strategy, we generated a new hiNSC variant, hiNeuroS, that was genetically distinct from fibroblasts and first-generation hiNSCs and had significantly enhanced tumor-homing and antitumor properties. In vitro, hiNeuroSs demonstrated superior migration to human triple-negative breast cancer (TNBC) cells and in vivo rapidly homed to TNBC tumor foci following intracerebroventricular (ICV) infusion. In TNBC parenchymal metastasis models, ICV infusion of hiNeuroSs secreting the proapoptotic agent TRAIL (hiNeuroS-TRAIL) significantly reduced tumor burden and extended median survival. In models of TNBC leptomeningeal carcinomatosis, ICV dosing of hiNeuroS-TRAIL therapy significantly delayed the onset of tumor formation and extended survival when administered as a prophylactic treatment, as well as reduced tumor volume while prolonging survival when delivered as established tumor therapy.


Asunto(s)
Células-Madre Neurales , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Fibroblastos , Humanos , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Neoplasias de la Mama Triple Negativas/patología
6.
Methods Mol Biol ; 1278: 153-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859948

RESUMEN

Quartz crystal microbalance with dissipation monitoring (QCM-D) is a useful technique for observing the adsorption of molecules onto a protein-functionalized surface in real time. This technique is based on relating changes in the frequency of a piezoelectric sensor chip, onto which molecules are adsorbing, to changes in mass using the Sauerbrey equation. Here, we outline the cleaning, preparation, and analysis involved in a typical QCM-D experiment, from which one can obtain mass adsorption and kinetic binding information.


Asunto(s)
Técnicas Biosensibles/métodos , Mapeo de Interacción de Proteínas/métodos , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Adsorción , Oro/química , Cinética , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA