Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 21288, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277546

RESUMEN

High-entropy ceramics have potential to improve the mechanical properties and high-temperature stability over traditional ceramics, and high entropy nitrides and carbonitrides (HENs and HECNs) are particularly attractive for high temperature and high hardness applications. The synthesis of 5 bulk HENs and 4 bulk HECNs forming single-phase materials is reported herein among 11 samples prepared. The hardness of HENs and HECNs increased by an average of 22% and 39%, respectively, over the rule-of-mixtures average of their monocarbide and mononitride precursors. Similarly, elastic modulus values increased by an average of 17% in nitrides and 31% in carbonitrides over their rule-of-mixtures values. The enhancement in mechanical properties is tied to an increase in the configurational entropy and a decrease in the valence electron concentration, providing parameters for tuning mechanical properties of high-entropy ceramics.

2.
ACS Sens ; 4(2): 488-497, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30644736

RESUMEN

Exosomes contain cell- and cell-state-specific cargos of proteins, lipids, and nucleic acids and play significant roles in cell signaling and cell-cell communication. Current research into exosome-based biomarkers has relied largely on analyzing candidate biomarkers, i.e., specific proteins or nucleic acids. However, this approach may miss important biomarkers that are yet to be identified. Alternative approaches are to analyze the entire exosome system, either by "omics" methods or by techniques that provide "fingerprints" of the system without identifying each individual biomolecule component. Here, we describe a platform of the latter type, which is based on surface-enhanced Raman spectroscopy (SERS) in combination with multivariate analysis, and demonstrate the utility of this platform for analyzing exosomes derived from different biological sources. First, we examined whether this analysis could use exosomes isolated from fetal bovine serum using a simple, commercially available isolation kit or necessitates the higher purity achieved by the "gold standard" ultracentrifugation/filtration procedure. Our data demonstrate that the latter method is required for this type of analysis. Having established this requirement, we rigorously analyzed the Raman spectral signature of individual exosomes using a unique, hybrid SERS substrate made of a graphene-covered Au surface containing a quasi-periodic array of pyramids. To examine the source of the Raman signal, we used Raman mapping of low and high spatial resolution combined with morphological identification of exosomes by scanning electron microscopy. Both approaches suggested that the spectra were collected from single exosomes. Finally, we demonstrate for the first time that our platform can distinguish among exosomes from different biological sources based on their Raman signature, a promising approach for developing exosome-based fingerprinting. Our study serves as a solid technological foundation for future exploration of the roles of exosomes in various biological processes and their use as biomarkers for disease diagnosis and treatment monitoring.


Asunto(s)
Exosomas/metabolismo , Espectrometría Raman/métodos , Animales , Análisis Multivariante , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA