Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Glob Chang Biol ; 30(5): e17334, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780465

RESUMEN

The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the "recovery wheel" presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3-5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.


Asunto(s)
Minería , Biodiversidad , Ecosistema , Ambiente , Conservación de los Recursos Naturales , Cambio Climático
2.
Adv Mar Biol ; 58: 1-95, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20959156

RESUMEN

Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed).


Asunto(s)
Ecosistema , Animales , Cambio Climático , Peces , Fenómenos Geológicos , Océanos y Mares , Factores de Tiempo
3.
Mar Environ Res ; 156: 104904, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32174334

RESUMEN

This study assesses the sex-specific effects induced by CdTe QDs, on the marine mussel Mytilus galloprovincialis in comparison to its dissolved counterpart. A 14 days exposure to CdTe QDs and dissolved Cd was conducted (10 µg Cd L-1), analysing Cd accumulation, oxidative stress, biotransformation, metallothionein and oxidative damage in the gonads. Both Cd forms caused significant antioxidant alterations, whereby QDs were more pro-oxidant, leading to oxidative damage, being females more affected. Overall, biochemical impairments on gonads of M. galloprovincialis demonstrate that the reproductive toxicity induced by CdTe QDs in mussels are sex-dependent and mediated by oxidative stress and lipid peroxidation. It is crucial to acknowledge how gametes are affected by metal-based nanoparticles, such as Cd-based QDs. As well as understanding the potential changes they may undergo at the cellular level during gametogenesis, embryogenesis and larval development potentially leading to serious impacts on population sustainability and ecosystem health.


Asunto(s)
Compuestos de Cadmio/toxicidad , Gónadas/efectos de los fármacos , Mytilus , Puntos Cuánticos/toxicidad , Telurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Cadmio , Ecosistema , Peroxidación de Lípido , Estrés Oxidativo
4.
Mar Environ Res ; 151: 104771, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31420206

RESUMEN

Polymetallic seafloor massive sulphide deposits are potential targets for deep-sea mining, but high concentrations of metals (including copper - Cu) may be released during exploitation activities, potentially inducing harmful impact. To determine whether shallow-water shrimp are suitable ecotoxicological proxies for deep-sea hydrothermal vent shrimp the effects of waterborne Cu exposure (3 and 10 days at 0.4 and 4 µM concentrations) in Palaemon elegans, Palaemon serratus, and Palaemon varians were compared with Mirocaris fortunata. Accumulation of Cu and a set of biomarkers were analysed. Results show different responses among congeneric species indicating that it is not appropriate to use shallow-water shrimps as ecotoxicological proxies for deep-water shrimps. During the evolutionary history of these species they were likely subject to different chemical environments which may have induced different molecular/biochemical adaptations/tolerances. Results highlight the importance of analysing effects of deep-sea mining in situ and in local species to adequately assess ecotoxicological effects under natural environmental conditions.


Asunto(s)
Decápodos , Respiraderos Hidrotermales , Minería , Animales , Cobre , Monitoreo del Ambiente , Dinámica Poblacional , Agua
5.
Sci Total Environ ; 636: 798-809, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29727846

RESUMEN

Cytotoxic drugs applied in chemotherapy enter the aquatic environment after patient's metabolism and excretion, in both main compounds and their respective metabolites. The increased consumption and discharge of these drugs raise concern on the genotoxic burden to non-target aquatic species, due to their unselective action on DNA. Settlement and adsorption of cytotoxic drugs to aquatic sediments pose risks to benthic species through chronic exposure. The aim of the present study was to assess the effects induced by the anticancer drug cyclophosphamide (CP) on the polychaete Nereis diversicolor, after 14 days of exposure to environmental relevant concentrations (10, 100, 500 and 1000 ng L-1). Burrowing impairment, neurotoxicity (Acetylcholinesterase - AChE activity), oxidative stress (superoxide dismutase - SOD; catalase - CAT; glutathione peroxidases - GPXs activities), biotransformation (glutathione-S-transferases - GST), oxidative damage (lipid peroxidation - LPO) and genotoxicity (DNA damage) were assessed. Burrowing impairments were higher at the lowest CP concentrations tested. The higher CP levels tested (500 and 1000 ng L-1) induced a significant inhibition on the enzymatic antioxidant system (SOD, GPx) and on GST activity. DNA damage was also significant at these concentrations as an outcome of CP metabolism, and high levels of oxidative damage occurred. The results showed that the prodrug CP was metabolically activated in the benthic biological model N. diversicolor. In addition to the potential cytotoxic impact likely to be caused in aquatic species with similar metabolism, N. diversicolor proved to be reliable and vulnerable to the cytotoxic mode of action of CP, even at the lower doses.


Asunto(s)
Ciclofosfamida/toxicidad , Poliquetos/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Catalasa , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Estrés Oxidativo , Poliquetos/efectos de los fármacos , Superóxido Dismutasa/metabolismo
6.
Aquat Toxicol ; 175: 277-85, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27101410

RESUMEN

In light of deep-sea mining industry development, particularly interested in massive-sulphide deposits enriched in metals with high commercial value, efforts are increasing to better understand potential environmental impacts to local fauna. The aim of this study was to assess the natural background levels of biomarkers in the hydrothermal vent shrimp Rimicaris exoculata and their responses to copper exposure at in situ pressure (30MPa) as well as the effects of depressurization and pressurization of the high-pressure aquarium IPOCAMP. R. exoculata were collected from the chimney walls of the hydrothermal vent site TAG (Mid Atlantic Ridge) at 3630m depth during the BICOSE cruise in 2014. Tissue metal accumulation was quantified in different tissues (gills, hepatopancreas and muscle) and a battery of biomarkers was measured: metal exposure (metallothioneins), oxidative stress (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase) and oxidative damage (lipid peroxidation). Data show a higher concentration of Cu in the hepatopancreas and a slight increase in the gills after incubations (for both exposed groups). Significant induction of metallothioneins was observed in the gills of shrimps exposed to 4µM of Cu compared to the control group. Moreover, activities of enzymes were detected for the in situ group, showing a background protection against metal toxicity. Results suggest that the proposed method, including a physiologically critical step of pressurizing and depressurizing the test chamber to enable the seawater exchange during exposure to contaminants, is not affecting metal accumulation and biomarkers response and may prove a useful method to assess toxicity of contaminants in deep-sea species.


Asunto(s)
Cobre/toxicidad , Decápodos/efectos de los fármacos , Respiraderos Hidrotermales/química , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Decápodos/metabolismo , Branquias/efectos de los fármacos , Branquias/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Metalotioneína/metabolismo , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA