Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636680

RESUMEN

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.

2.
Hepatology ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652584

RESUMEN

BACKGROUND AIMS: HCV infection continues to be a major global health burden, despite effective antiviral treatments. The urgent need for a protective vaccine is hindered by the scarcity of suitable HCV permissive animal models tractable in vaccination and challenge studies. Currently, only antibody neutralization studies in infectious cell culture systems or studies of protection by passive immunization of human-liver chimeric mice offer the possibility to evaluate the effect of vaccine-induced antibodies. However, differences between culture-permissive and in vivo-permissive viruses make it a challenge to compare analyses between platforms. To address this problem, we aimed at developing genotype-specific virus variants with genetic stability both in vitro and in vivo. APPROACH RESULTS: We demonstrated infection of human-liver chimeric mice with cell culture-adapted HCV JFH1-based Core-NS2 recombinants of genotype 1-6, with a panel of 10 virus strains used extensively in neutralization and receptor studies. Clonal re-engineering of mouse-selected mutations resulted in virus variants with robust replication both in Huh7.5 cells and human-liver chimeric mice, with genetic stability. Furthermore, we showed that overall, these virus variants have similar in vitro neutralization profiles as their parent strains and demonstrated their use for in vivo neutralization studies. CONCLUSIONS: These mouse-selected HCV recombinants enable triage of new vaccine-relevant antibodies in vitro and further allow characterization of protection from infection in vivo using identical viruses in human-liver chimeric mice. As such, these viruses will serve as important resources in testing novel antibodies and can thus guide strategies to develop an efficient protective vaccine against HCV infection.

3.
Proc Natl Acad Sci U S A ; 119(34): e2202653119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969792

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.


Asunto(s)
Virus de la Hepatitis E , Ribavirina , Proteínas Virales , Línea Celular Tumoral , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Hepatocitos/virología , Humanos , Recurrencia Local de Neoplasia/genética , Nucleótidos , ARN Viral , Ribavirina/farmacología , Proteínas Virales/genética , Replicación Viral
4.
PLoS Pathog ; 18(6): e1010472, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35763545

RESUMEN

Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , Técnicas de Cultivo de Célula , Genotipo , Humanos , Ratones , Mutación , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
5.
Hepatology ; 77(3): 802-815, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976053

RESUMEN

BACKGROUND AND AIMS: Current liver-directed gene therapies look for adeno-associated virus (AAV) vectors with improved efficacy. With this background, capsid engineering is explored. Whereas shuffled capsid library screenings have resulted in potent liver targeting variants with one first vector in human clinical trials, modifying natural serotypes by peptide insertion has so far been less successful. Here, we now report on two capsid variants, MLIV.K and MLIV.A, both derived from a high-throughput in vivo AAV peptide display selection screen in mice. APPROACH AND RESULTS: The variants transduce primary murine and human hepatocytes at comparable efficiencies, a valuable feature in clinical development, and show significantly improved liver transduction efficacy, thereby allowing a dose reduction, and outperform parental AAV2 and AAV8 in targeting human hepatocytes in humanized mice. The natural heparan sulfate proteoglycan binding ability is markedly reduced, a feature that correlates with improved hepatocyte transduction. A further property that might contribute to the improved transduction efficacy is the lower capsid melting temperature. Peptide insertion also caused a moderate change in sensitivity to human sera containing anti-AAV2 neutralizing antibodies, revealing the impact of epitopes located at the basis of the AAV capsid protrusions. CONCLUSIONS: In conclusion, MLIV.K and MLIV.A are AAV peptide display variants selected in immunocompetent mice with improved hepatocyte tropism and transduction efficiency. Because these features are maintained across species, MLIV variants provide remarkable potential for translation of therapeutic approaches from mice to men.


Asunto(s)
Cápside , Dependovirus , Animales , Ratones , Humanos , Cápside/química , Cápside/metabolismo , Serogrupo , Dependovirus/genética , Transducción Genética , Vectores Genéticos , Hígado/metabolismo , Péptidos/análisis , Péptidos/genética , Péptidos/metabolismo , Terapia Genética/métodos
6.
Cell Mol Life Sci ; 80(11): 326, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833515

RESUMEN

The hepatitis E virus (HEV) is an underestimated RNA virus of which the viral life cycle and pathogenicity remain partially understood and for which specific antivirals are lacking. The virus exists in two forms: nonenveloped HEV that is shed in feces and transmits between hosts; and membrane-associated, quasi-enveloped HEV that circulates in the blood. It is suggested that both forms employ different mechanisms for cellular entry and internalization but little is known about the exact mechanisms. Interestingly, the membrane of enveloped HEV is enriched with phosphatidylserine, a natural ligand for the T-cell immunoglobulin and mucin domain-containing protein 1 (TIM1) during apoptosis and involved in 'apoptotic mimicry', a process by which viruses hijack the apoptosis pathway to promote infection. We here investigated the role of TIM1 in the entry process of HEV. We determined that HEV infection with particles derived from culture supernatant, which are cloaked by host-derived membranes (eHEV), was significantly impaired after knockout of TIM1, whereas infection with intracellular HEV particles (iHEV) was unaffected. eHEV infection was restored upon TIM1 expression; and enhanced after ectopic TIM1 expression. The significance of TIM1 during entry was further confirmed by viral binding assay, and point mutations of the PS-binding pocket diminished eHEV infection. In addition, Annexin V, a PS-binding molecule also significantly reduced infection. Taken together, our findings support a role for TIM1 in eHEV-mediated cell entry, facilitated by the PS present on the viral membrane, a strategy HEV may use to promote viral spread throughout the infected body.


Asunto(s)
Virus de la Hepatitis E , Virus , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/metabolismo , Internalización del Virus , Receptores de Superficie Celular/metabolismo
7.
Gut ; 72(6): 1186-1195, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35977815

RESUMEN

OBJECTIVE: Chronic HBV/HDV infections are a major cause of liver cancer. Current treatments can only rarely eliminate HBV and HDV. Our previously developed preS1-HDAg immunotherapy could induce neutralising antibodies to HBV in vivo and raise HBV/HDV-specific T-cells. Here, we further investigate if a heterologous prime-boost strategy can circumvent T-cell tolerance and preclude HDV superinfection in vivo. DESIGN: A DNA prime-protein boost strategy was evaluated for immunogenicity in mice and rabbits. Its ability to circumvent T-cell tolerance was assessed in immunocompetent hepatitis B surface antigen (HBsAg)-transgenic mice. Neutralisation of HBV and HDV was evaluated both in vitro and in immunodeficient human-liver chimeric mice upon adoptive transfer. RESULTS: The prime-boost strategy elicits robust HBV/HDV-specific T-cells and preS1-antibodies that can effectively prevent HBV and HDV (co-)infection in vitro and in vivo. In a mouse model representing the chronic HBsAg carrier state, active immunisation primes high levels of preS1-antibodies and HDAg-specific T-cells. Moreover, transfer of vaccine-induced antibodies completely protects HBV-infected human-liver chimeric mice from HDV superinfection. CONCLUSION: The herein described preS1-HDAg immunotherapy is shown to be immunogenic and vaccine-induced antibodies are highly effective at preventing HBV and HDV (super)infection both in vitro and in vivo. Our vaccine can complement current and future therapies for the control of chronic HBV and HDV infection.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Sobreinfección , Humanos , Ratones , Animales , Conejos , Antígenos de Hepatitis delta , Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica/prevención & control , Sobreinfección/prevención & control , Virus de la Hepatitis Delta/genética , Hepatitis B/prevención & control , Virus de la Hepatitis B/genética , Anticuerpos Antivirales , Ratones Transgénicos
8.
J Hepatol ; 79(3): 645-656, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121436

RESUMEN

BACKGROUND & AIMS: Hepatitis A virus (HAV) infections are considered not to trigger innate immunity in vivo, in contrast to hepatitis C virus (HCV). This lack of induction has been imputed to strong interference by HAV proteases 3CD and 3ABC. We aimed to elucidate the mechanisms of immune activation and counteraction by HAV and HCV in vivo and in vitro. METHODS: Albumin-urokinase-type plasminogen activator/severe combined immunodeficiency (Alb/uPA-SCID) mice with humanised livers were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by Toll-like receptor 3 and retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5), respectively. Cleavage of the adaptor proteins TIR-domain-containing adapter-inducing interferon-ß (TRIF) and mitochondrial antiviral-signalling protein (MAVS) was analysed by transient and stable expression of HAV and HCV proteases and virus infection. RESULTS: We detected similar levels of interferon-stimulated gene induction in hepatocytes of HAV- and HCV-infected mice with humanised liver. In cell culture, HAV induced interferon-stimulated genes exclusively upon MDA5 sensing and depended on LGP2 (laboratory of genetics and physiology 2). TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF cleavage was not detected. CONCLUSIONS: HAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by proteolytic cleavage. HCV activates Toll-like receptor 3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes to HCV-induced antiviral responses in hepatocytes. Our results shed new light on the induction of innate immunity and counteraction by HAV and HCV. IMPACT AND IMPLICATIONS: Understanding the mechanisms that determine the differential outcomes of HAV and HCV infections is crucial for the development of effective therapies. Our study provides insights into the interplay between these viruses and the host innate immune response in vitro and in vivo, shedding light on previously controversial or only partially investigated aspects. This knowledge could tailor the development of new strategies to combat HCV persistence, as well as improve our understanding of the factors underlying successful HAV clearance.


Asunto(s)
Hepatitis A , Hepatitis C , Evasión Inmune , Inmunidad Innata , Virus de la Hepatitis A , Hepacivirus , Animales , Ratones , Ratones SCID
9.
Proc Natl Acad Sci U S A ; 117(3): 1731-1741, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896581

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.


Asunto(s)
Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Hepatitis E/metabolismo , Hepatocitos/virología , Animales , Antivirales/farmacología , Carcinoma Hepatocelular , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Genotipo , Células Hep G2 , Hepatitis E/virología , Virus de la Hepatitis E/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicón , Ribavirina/metabolismo , Porcinos , Carga Viral , Replicación Viral
10.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31915293

RESUMEN

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatopatías/genética , Alcaloides de Pirrolicidina/farmacología , Animales , Trasplante de Células , Quimera , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Hepatitis B , Virus de la Hepatitis B , Hepatocitos/trasplante , Proteínas de Homeodominio/genética , Humanos , Hidrolasas/genética , Subunidad gamma Común de Receptores de Interleucina/genética , Hígado/patología , Hepatopatías/patología , Malaria , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Plasmodium falciparum
11.
J Infect Dis ; 223(1): 128-138, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31994701

RESUMEN

BACKGROUND: Chronic hepatitis B and D virus (HBV/HDV) infections can cause cancer. Current HBV therapy using nucleoside analogues (NAs) is life-long and reduces but does not eliminate the risk of cancer. A hallmark of chronic hepatitis B is a dysfunctional HBV-specific T-cell response. We therefore designed an immunotherapy driven by naive healthy T cells specific for the HDV antigen (HDAg) to bypass the need for HBV-specific T cells in order to prime PreS1-specific T cells and PreS1 antibodies blocking HBV entry. METHODS: Ten combinations of PreS1 and/or HDAg sequences were evaluated for induction of PreS1 antibodies and HBV- and HDV-specific T cells in vitro and in vivo. Neutralization of HBV by PreS1-specific murine and rabbit antibodies was evaluated in cell culture, and rabbit anti-PreS1 were tested for neutralization of HBV in mice repopulated with human hepatocytes. RESULTS: The best vaccine candidate induced T cells to PreS1 and HDAg, and PreS1 antibodies blocking HBV entry in vitro. Importantly, adoptive transfer of PreS1 antibodies prevented, or modulated, HBV infection after a subsequent challenge in humanized mice. CONCLUSIONS: We here describe a novel immunotherapy for chronic HBV/HDV that targets viral entry to complement NAs and coming therapies inhibiting viral maturation.


Asunto(s)
Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis D Crónica/tratamiento farmacológico , Virus de la Hepatitis Delta/inmunología , Internalización del Virus/efectos de los fármacos , Animales , Femenino , Vacunas contra Hepatitis B , Hepatocitos/efectos de los fármacos , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Conejos
12.
Rev Med Virol ; 30(2): e2086, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31835277

RESUMEN

Hepatitis E virus (HEV) is the most common cause of viral hepatitis globally, and it is an emerging pathogen in developed countries. In vivo studies of HEV have long been hindered due to the lack of an efficient small animal model. Recently, human liver chimeric mice were described as an elegant model to study chronic HEV infection. HEV infection was established in mice with humanized liver that were challenged with stool preparations containing HEV genotype (gt)1 and/or gt3. An increase in viral load and the level of HEV Ag in mouse samples were markers of active infection. Plasma-derived HEV preparations were less infectious. The kinetics of HEV ORF2 Ag during HEV infection and its impact on HEV diagnosis were described in this model. In addition, the nature of HEV particles and HEV ORF2 Ag were characterized. Moreover, humanized mice were used to study the impact of HEV infection on the hepatic innate transcriptome and evaluation of anti-HEV therapies. This review highlights recent advances in the HEV field gathered from well-established experimental mouse models, with an emphasis on this model as a tool for elucidating the course of HEV infection, the study of the HEV life cycle, the interaction of the virus with the host, and the evaluation of new anti-HEV therapies.


Asunto(s)
Virus de la Hepatitis E/fisiología , Hepatitis E/virología , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Hepatitis E/tratamiento farmacológico , Hepatitis E/patología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones , Ratones Transgénicos
13.
J Infect Dis ; 220(5): 811-819, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31001628

RESUMEN

BACKGROUND: Hepatitis E virus infection (HEV) is an emerging problem in developed countries. Diagnosis of HEV infection is based on the detection of HEV-specific antibodies, viral RNA, and/or antigen (Ag). Humanized mice were previously reported as a model for the study of HEV infection, but published data were focused on the quantification of viral RNA. However, the kinetics of HEV Ag expression during infection remains poorly understood. METHODS: Plasma specimens and suspensions of fecal specimens from HEV-infected and ribavirin-treated humanized mice were analyzed using HEV antigen-specific enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction analysis, density gradient analysis, and Western blotting. RESULT: Open reading frame 2 (ORF2) Ag was detected in both plasma and stool from HEV-infected mice, and levels increased over time. Contrary to HEV RNA, ORF2 Ag levels were higher in mouse plasma than in stool. Interestingly, ORF2 was detected in plasma from mice that tested negative for HEV RNA in plasma but positive for HEV RNA in stool and was detected after viral clearance in mice that were treated with ribavirin. Plasma density gradient analysis revealed the presence of the noninfectious glycosylated form of ORF2. CONCLUSION: ORF2 Ag can be used as a marker of active HEV infection and for assessment of the effect of antiviral therapy, especially when fecal samples are not available or molecular diagnostic tests are not accessible.


Asunto(s)
Antígenos de la Hepatitis/inmunología , Virus de la Hepatitis E/inmunología , Hepatitis E/diagnóstico , Hígado/virología , Proteínas Virales/inmunología , Animales , Modelos Animales de Enfermedad , Heces/virología , Hepatitis E/tratamiento farmacológico , Hepatitis E/inmunología , Virus de la Hepatitis E/efectos de los fármacos , Humanos , Cinética , Ratones , Ratones SCID , ARN Viral/aislamiento & purificación , Ribavirina
14.
J Hepatol ; 70(6): 1082-1092, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30769006

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection causes chronic liver disease. Antivirals have been developed and cure infection. However, resistance can emerge and salvage therapies with alternative modes of action could be useful. Several licensed drugs have emerged as HCV entry inhibitors and are thus candidates for drug repurposing. We aimed to dissect their mode of action, identify improved derivatives and determine their viral targets. METHODS: HCV entry inhibition was tested for a panel of structurally related compounds, using chimeric viruses representing diverse genotypes, in addition to viruses containing previously determined resistance mutations. Chemical modeling and synthesis identified improved derivatives, while generation of susceptible and non-susceptible chimeric viruses pinpointed E1 determinants of compound sensitivity. RESULTS: Molecules of the diphenylpiperazine, diphenylpiperidine, phenothiazine, thioxanthene, and cycloheptenepiperidine chemotypes inhibit HCV infection by interfering with membrane fusion. These molecules and a novel p-methoxy-flunarizine derivative with improved efficacy preferentially inhibit genotype 2 viral strains. Viral residues within a central hydrophobic region of E1 (residues 290-312) control susceptibility. At the same time, viral features in this region also govern pH-dependence of viral membrane fusion. CONCLUSIONS: Small molecules from different chemotypes related to flunarizine preferentially inhibit HCV genotype 2 membrane fusion. A hydrophobic region proximal to the putative fusion loop controls sensitivity to these drugs and the pH range of membrane fusion. An algorithm considering viral features in this region predicts viral sensitivity to membrane fusion inhibitors. Resistance to flunarizine correlates with more relaxed pH requirements for fusion. LAY SUMMARY: This study describes diverse compounds that act as HCV membrane fusion inhibitors. It defines viral properties that determine sensitivity to these molecules and thus provides information to identify patients that may benefit from treatment with membrane fusion inhibitors.


Asunto(s)
Hepacivirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Farmacorresistencia Viral , Flunarizina/farmacología , Hepacivirus/fisiología , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Relación Estructura-Actividad
16.
Gastroenterology ; 154(1): 211-223.e8, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958858

RESUMEN

BACKGROUND & AIMS: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. Approximately 2 billion people live in areas endemic for HEV and are at risk of infection. The HEV genome encodes 3 proteins, including the ORF2 capsid protein. Detailed analyses of the HEV life cycle has been hampered by the lack of an efficient viral culture system. METHODS: We performed studies with gt3 HEV cell culture-produced particles and patient blood and stool samples. Samples were fractionated on iodixanol gradients and cushions. Infectivity assays were performed in vitro and in human liver chimeric mice. Proteins were analyzed by biochemical and proteomic approaches. Infectious particles were analyzed by transmission electron microscopy. HEV antigen levels were measured with the Wantaï enzyme-linked immunosorbent assay. RESULTS: We developed an efficient cell culture system and isolated HEV particles that were infectious in vitro and in vivo. Using transmission electron microscopy, we defined the ultrastructure of HEV cell culture-produced particles and particles from patient sera and stool samples. We also identified the precise sequence of the infectious particle-associated ORF2 capsid protein. In cultured cells and in samples from patients, HEV produced 3 forms of the ORF2 capsid protein: infectious/intracellular ORF2 (ORF2i), glycosylated ORF2 (ORF2g), and cleaved ORF2 (ORF2c). The ORF2i protein associated with infectious particles, whereas the ORF2g and ORF2c proteins were massively secreted glycoproteins not associated with infectious particles. ORF2g and ORF2c were the most abundant antigens detected in sera from patients. CONCLUSIONS: We developed a cell culture system and characterized HEV particles; we identified 3 ORF2 capsid proteins (ORF2i, ORF2g, and ORFc). These findings will advance our understanding of the HEV life cycle and improve diagnosis.


Asunto(s)
Proteínas de la Cápside/aislamiento & purificación , Virus de la Hepatitis E/fisiología , Hepatitis E/metabolismo , Proteínas Virales/aislamiento & purificación , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Hepatitis E/etiología , Hepatitis E/patología , Hepatocitos , Humanos , Ratones
17.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068644

RESUMEN

In the hepatitis C virus (HCV) envelope glycoproteins E1 and E2, which form a heterodimer, E2 is the receptor binding protein and the major target of neutralizing antibodies, whereas the function of E1 remains less characterized. To investigate E1 functions, we generated a series of mutants in the conserved residues of the C-terminal region of the E1 ectodomain in the context of an infectious clone. We focused our analyses on two regions of interest. The first region is located in the middle of the E1 glycoprotein (between amino acid [aa] 270 and aa 291), which contains a conserved hydrophobic sequence and was proposed to constitute a putative fusion peptide. The second series of mutants was generated in the region from aa 314 to aa 342 (the aa314-342 region), which has been shown to contain two α helices (α2 and α3) by nuclear magnetic resonance studies. Of the 22 generated mutants, 20 were either attenuated or noninfectious. Several mutations modulated the virus's dependence on claudin-1 and the scavenger receptor BI coreceptors for entry. Most of the mutations in the putative fusion peptide region affected virus assembly. Conversely, mutations in the α-helix aa 315 to 324 (315-324) residues M318, W320, D321, and M322 resulted in a complete loss of infectivity without any impact on E1E2 folding and on viral assembly. Further characterization of the W320A mutant in the HCVpp model indicated that the loss of infectivity was due to a defect in viral entry. Together, these results support a role for E1 in modulating HCV interaction with its coreceptors and in HCV assembly. They also highlight the involvement of α-helix 315-324 in a late step of HCV entry.IMPORTANCE HCV is a major public health problem worldwide. The virion harbors two envelope proteins, E1 and E2, which are involved at different steps of the viral life cycle. Whereas E2 has been extensively characterized, the function of E1 remains poorly defined. We characterized here the function of the putative fusion peptide and the region containing α helices of the E1 ectodomain, which had been previously suggested to be important for virus entry. We could confirm the importance of these regions for the virus infectivity. Interestingly, we found several residues modulating the virus's dependence on several HCV receptors, thus highlighting the role of E1 in the interaction of the virus with cellular receptors. Whereas mutations in the putative fusion peptide affected HCV infectivity and morphogenesis, several mutations in the α2-helix region led to a loss of infectivity with no effect on assembly, indicating a role of this region in virus entry.


Asunto(s)
Hepacivirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Ensamble de Virus , Internalización del Virus , Línea Celular , Análisis Mutacional de ADN , Hepatocitos/virología , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Envoltorio Viral/genética
18.
J Viral Hepat ; 26(10): 1218-1223, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31194897

RESUMEN

Transmission of hepatitis E virus (HEV) through transfusion of blood components has already been reported in several European countries. Here, we assessed the HEV prevalence in Flemish blood donors. This study is of importance in order to assess the risk of HEV transmission through blood transfusion. We analysed 38 137 blood donation samples that were collected by the Red Cross Flanders during the period May-June 2015. All samples were screened for the presence of HEV RNA and a selection for HEV-specific IgM/IgG. After pooling per 6, 11 pools reacted positive during RNA screening. Reactive pools were deconstructed, and individual samples were retested. After deconstruction, seven samples were confirmed as HEV RNA positive. Serological screening of the confirmed RNA-positive samples showed that six out of these seven samples were HEV IgM positive, of which three donors were also IgG positive. Serological screening was also performed on the samples that constituted the four initially HEV RNA reactive pools where RNA positivity was not confirmed on the individual level. In three pools, we found indirect evidence of recent HEV exposure. Within 356 randomly selected samples, 31 donations were HEV IgG positive. Here we show that at least 1:5448 of blood donations in Flanders may originate from donors that are actively infected with HEV. Upon transfusion, these donations may pose a major threat towards patients at risk. Finally, a serological analysis showed that the anti-HEV IgG prevalence in Flemish blood donors is 8.71%.


Asunto(s)
Donantes de Sangre , Hepatitis E/epidemiología , Adolescente , Adulto , Anciano , Bélgica/epidemiología , Femenino , Anticuerpos Antihepatitis/sangre , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Prevalencia , ARN Viral/sangre , Análisis de Secuencia de ARN , Adulto Joven
19.
Transpl Infect Dis ; 21(5): e13135, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31246353

RESUMEN

BACKGROUND: Owing to organ shortage, transplantation of organs from HCV (hepatitis C virus) viremic donors into HCV negative individuals is getting more and more accepted. However, transmission of HCV to the host is nearly universal. Until now it is unknown if preservation solutions (PS) might alter infectivity and stability of HCV in the transplant setting. Therefore, seven different preservation solutions (PS) with variable composition were tested in vitro for their direct anti- and proviral effects on HCV. METHODS: In vitro grown HCV based on the JFH-1 isolate was used to characterize the effect of seven different PS on the HCV replication cycle including HCV attachment, entry, replication, and assembly. In addition, HCV stability in PS was tested. RESULTS: Overall, 6/7 PS enhanced HCV infectivity: IGL-1 increased HCV attachment and entry, UW Belzer and Perfadex boosted HCV entry. Production of novel viral particles was enhanced in HTK, UW Belzer, and IGL-1. In contrast, viral replication was significantly reduced in HTK solution while all other PS had no effect on HCV RNA replication. HCV was significantly more stable in HTK solution. Euro Collins was the only PS that did not support HCV infectivity in cell culture. None of the used PS showed cytotoxic effects. CONCLUSION: Our data indicate that HCV infectivity and stability is maintained by several PS.


Asunto(s)
Hepacivirus/efectos de los fármacos , Soluciones Preservantes de Órganos/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Hepacivirus/fisiología , Humanos , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
20.
J Infect Dis ; 218(11): 1711-1721, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29939277

RESUMEN

Background: Although organ shortage is a rising problem, organs from hepatitis C virus (HCV) ribonucleic acid (RNA)-positive donors are not routinely transplanted in HCV-negative individuals. Because HCV only infects hepatocytes, other organs such as kidneys are merely contaminated with HCV via the blood. In this study, we established a protocol to reduce HCV virions during the cold ischemic time. Methods: Standard virological assays were used to investigate the effect of antivirals, including methylene blue (MB), in different preservation solutions. Kidneys from mini pigs were contaminated with Jc1 or HCV RNA-positive human serum. Afterwards, organs were flushed with MB. Hypothermic machine perfusion was used to optimize reduction of HCV. Results: Three different antivirals were investigated for their ability to inactivate HCV in vitro. Only MB completely inactivated HCV in the presence of all perfusion solutions. Hepatitis C virus-contaminated kidneys from mini pigs were treated with MB and hypothermic machine perfusion without any negative effect on the graft. Human liver-uPA-SCID mice did not establish HCV infection after inoculation with flow through from these kidneys. Conclusions: This proof-of-concept study is a first step to reduce transmission of infectious HCV particles in the transplant setting and might serve as a model for other relevant pathogens.


Asunto(s)
Aloinjertos/virología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C , Trasplante de Riñón/métodos , Azul de Metileno/farmacología , Antivirales/uso terapéutico , Isquemia Fría/métodos , Hepatitis C/prevención & control , Hepatitis C/transmisión , Hepatitis C/virología , Humanos , Azul de Metileno/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA