Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 15(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431430

RESUMEN

The concern about coconut shell disposal and natural fine aggregate depletion has prompted researchers to utilize coconut shell as aggregate in recent years. However, the majority of the present literature has focused on utilizing coconut shell as a coarse aggregate replacement in concrete via the traditional method. In this study, concrete incorporating coconut shell as a fine aggregate replacement (10-100%) was evaluated using permeability and water absorption tests in a systematic way. The response surface methodology (RSM) was first used to design the experimental works. In addition, an artificial neural network (ANN) and genetic expression programming (GEP) were also taken into account to mathematically predict the permeability and water absorption. Based on both experimental and theoretical modeling, three scenarios were observed. In the first scenario, high quality concrete was achieved when the replacement percentage of sand by coconut shell ranged from 0% to 10%. This is because both the permeability and water absorption were less than 1.5 × 10-11 m and 5%, respectively. In the second scenario, an acceptable and reasonable low permeability (less than 2.7 × 10-11 m/s) and water absorption (less than 6.7%) were also obtained when the replacement percentage increased up to 60%. In contrast, the high content coconut shell, such as 90% and 100%, developed concrete with a high permeability and water absorption and was defined in the third scenario. It was also inferred that both the experimental and mathematical models (ANN, GEP, and RSM) have consistent and accurate results. The correlation statistics indicators (R2) were greater than 0.94 and the error was less than 0.3, indicating a strong correlation and minimum error. In conclusion, coconut shell could act as a good alternative material to produce cleaner concrete with an optimum value of 50% as a fine aggregate replacement.

2.
Polymers (Basel) ; 14(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35683966

RESUMEN

Several researchers devoted considerable efforts to partially replace natural aggregates in concrete with recycled materials such as recycled tire rubber. However, this often led to a significant reduction in the compressive strength of rubberized concrete due to the weaker interfacial transition zone between the cementitious matrix and rubber particles and the softness of rubber granules. Thereafter, significant research has explored the effects of supplementary cementitious materials such as zeolite, fly ash, silica fume, and slag used as partial replacement for cement on rubberized concrete properties. In this study, systematic experimental work was carried out to assess the mechanical properties of palm oil fuel ash (POFA)-based concrete incorporating tire rubber aggregates (TRAs) using the response surface methodology (RSM). Based on the findings, reasonable compressive, flexure, and tensile strengths were recorded or up to 10% replacement of sand with recycled tire fibre and fine TRAs. In particular, the reduction in compressive, tensile, and flexural strengths of POFA concrete incorporating fibre rubber decreased by 16.3%, 9.8%, and 10.1% at 365 days compared to normal concrete without POFA and rubber. It can be concluded that utilization of a combination of POFA and fine or fibre rubber could act as a beneficial strategy to solve the weakness of current rubberized concrete's strength as well as to tackle the environmental issues of the enormous stockpiles of waste tires worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA