Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Genet ; 65(2): 309-319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37987972

RESUMEN

Long noncoding RNAs (lncRNAs) play a role in the emergence and progression of several human tumors, including luminal B breast cancer (BC). The biological functions and potential mechanisms of lncRNA myocardial infarction-associated transcripts (MIAT) in luminal B BC, on the contrary, are unknown. In this work, we used UALCAN database analysis to find high expression of lncRNA MIAT in luminal BC tissues and also confirmed high levels of lncRNA MIAT expression in luminal B BC tissues and cells. In vitro knockdown of MIAT inhibited the proliferation, migration, and invasion of BT474 cells. In addition, we found that miR-150-5p levels were significantly reduced in luminal B BC specimens and cells, and miR-150-5p levels were significantly increased when MIAT was knocked down. And TIMER database analysis showed that MIAT was positively associated with PDL1. Through bioinformatic tools and in vitro experiments, lncRNA MIAT could function as a competitive endogenous RNA (CeRNA) to further regulate programmed cell death ligand 1 (PDL1) expression by directly sponging miR-150-5p. In conclusion, our data suggest that MIAT, an oncogene, may sponge miR-150-5p to regulate PDL1 expression and affect proliferation, migration, and invasion in luminal B BC in vitro.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
Medicine (Baltimore) ; 102(42): e35361, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37861518

RESUMEN

The diagnostic efficacy of carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA15-3) is limited in breast cancer (BC), highlighting the necessity of exploring novel biomarkers to improve for BC diagnosis. Therefore, we assessed the diagnostic value of fat mass and obesity-associated protein (FTO), phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit ß (PIK3CB) as a potential complementary biomarker to CEA and CA153 in breast cancer by measuring serum FTO,PIK3CB levels. FTO, PIK3CB, CEA and CA15-3 levels were measured in 112 BC patients and 64 healthy controls using enzyme-linked immunosorbent assay or electrochemiluminescence immunoassay. Spearman's rank correlation analysis was conducted to assess the correlation between the levels of the 2 markers. The relationships between FTO, PIK3CB, CEA, CA15-3 and clinical characteristics were evaluated. Receiver operating characteristic curve (ROC) analysis was performed to assess the diagnostic value of FTO, PIK3CB, CEA and CA15-3 of BC. Serum FTO, PIK3CB, CEA and CA15-3 levels were significantly increased in BC. There was no correlation between FTO, PIK3CB and CEA, CA15-3. FTO and PIK3CB demonstrated significant diagnostic performance for breast cancer, with FTO achieving a specificity of 90.63%. The diagnostic performance of 2-four biomarker combinations was significantly superior to individual CEA or CA153, with a combined panel of 4 biomarkers yielding an area under the curve (AUC) of 0.918, sensitivity of 81.25% and specificity of 85.94%. In early-stage breast cancer (I + II), the combination of FTO, PIK3CB, CEA and CA153 yielded an AUC of 0.895, sensitivity of 77.22% and specificity of 85.71%. FTO and PIK3CB can be served as potential biomarkers to complement CEA and CA15-3 for BC diagnosis. Combining FTO, PIK3CB, CEA and CA15-3 improves the diagnostic efficiency of breast cancer.


Asunto(s)
Neoplasias de la Mama , Antígeno Carcinoembrionario , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Biomarcadores de Tumor , Mucina-1 , Curva ROC , Fosfatidilinositol 3-Quinasa Clase I/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
3.
Front Oncol ; 13: 1256360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860188

RESUMEN

Breast cancer is characterized by a high incidence rate and its treatment challenges, particularly in certain subtypes. Consequently, there is an urgent need for the development of novel therapeutic approaches. Immunotherapy utilizing immune checkpoint inhibitors (ICIs) is currently gaining momentum for the treatment of breast cancer. Substantial progress has been made in clinical studies employing cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) inhibitors for breast cancer, but the cure rates are relatively low. To improve the efficacy of CTLA-4-based therapy for breast cancer, further research is imperative to explore more effective immune-based treatment strategies. In addition to monotherapy, CTLA-4 inhibitors are also being investigated in combination with other ICIs or alternative medications. However, it should be noted that immune-based treatments may cause adverse events. This review focuses on the mechanisms of CTLA-4 inhibitor monotherapy or combination therapy in breast cancer. We systematically summarize the latest research and clinical advances in CTLA-4-based immunotherapy for breast cancer, providing new perspectives on the treatment of breast cancer. In addition, this review highlights the immune-related adverse events (irAEs) associated with CTLA-4 inhibitors, providing insights into the development of appropriate clinical tumor immunotherapy regimens and intervention strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA