Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(26): 10835-10840, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889097

RESUMEN

G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.


Asunto(s)
ADN , Flavonas , Colorantes Fluorescentes , G-Cuádruplex , Potasio , Flavonas/química , Colorantes Fluorescentes/química , Potasio/química , Potasio/análisis , ADN/química , Espectrometría de Fluorescencia
2.
Biochemistry ; 60(48): 3707-3713, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34757721

RESUMEN

G-quadruplex (G4) ligand-induced DNA damage has been involved in many physiological functions of cells. Herein, cationic porphyrin (TMPyP4)-mediated DNA oxidation damage was investigated aiming at mitochondrial G4 DNA (mt9438) and its structural analogue of the thrombin-binding aptamer (TBA). TMPyP4 is found to stabilize TBA G4 but destabilize mt9438. For two resulting DNA-TMPyP4 assemblies, the distinct light-induced singlet oxygen (1O2) generation and the subsequent DNA damage were found. For mt9438-TMPyP4, a slower 1O2-induced DNA damage takes place and results in the formation of DNA aggregation. In contrast, 1O2 tends to promote DNA unfolding in a relatively faster rate for TBA-TMPyP4. Despite of such distinct DNA damage behavior, UV resonance Raman spectra reveal that for both mt9438-TMPyP4 and TBA-TMPyP4 the DNA damage commonly stems from the guanine-specific oxidation. Our results clearly indicate that the ligand-mediated DNA damage is strongly dependent on the initial interplay between DNA and the ligand.


Asunto(s)
Aptámeros de Nucleótidos/química , G-Cuádruplex/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Porfirinas/química , Aptámeros de Nucleótidos/genética , Cationes/química , Cationes/farmacología , Daño del ADN/efectos de los fármacos , Ligandos , Porfirinas/genética , Porfirinas/farmacología
3.
Anal Chem ; 93(18): 6907-6912, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33929188

RESUMEN

Potassium ion (K+) plays a crucial role in biological systems, such as maintaining cellular processes and causing diseases. However, specifically, the detection of K+ is extremely challenging because of the coexistence of the chemically similar ion of Na+ under physiological conditions. In this work, a K+ specific biosensor is constructed on the basis of a dimerized G-quadruplex (GQ) DNA, which is promoted by K+, and the enzymatic activity of the resulting DNAzyme depends on the concentration of the K+. The K+ in a 1-200 mM concentration range can be selectively detected by visual color, UV-Vis absorbance or fluorescence even if the concentration of the accompanying Na+ is up to 140 mM at an ambient condition up to 45 °C. In addition, this system can also be used to selectively detect NH4+ in a 5-200 mM concentration range. This dimerized DNAzyme offers a new type of biosensor with a potential application in the biological system.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , ADN Catalítico/metabolismo , Hemina , Iones , Potasio
4.
Chem Commun (Camb) ; 60(9): 1172-1175, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38193540

RESUMEN

We found that under oxidative stress conditions, the coexistence of human telomeric DNA (HT-DNA) and a copper-terpyridine metallodrug can accelerate dopamine oxidation. The unwinding of HT-DNA from a duplex to cytosine-rich (C-rich) and guanine-rich (G-rich) single strands promotes dopamine oxidation in a general order of C-rich > G-rich > duplex. Along with dopamine oxidation, HT-DNA also undergoes severe damage.


Asunto(s)
Cobre , Dopamina , Humanos , ADN/metabolismo , Oxidación-Reducción , Guanina , Citosina , Daño del ADN
5.
Chem Sci ; 12(22): 7918-7923, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34168845

RESUMEN

The assembly of DNA with metal-complex cofactors can form promising biocatalysts for asymmetric reactions, although catalytic performance is typically limited by low enantioselectivities and stereo-control remains a challenge. Here, we engineer G-quadruplex-based DNA biocatalysts for an asymmetric cyclopropanation reaction, achieving enantiomeric excess (eetrans) values of up to +91% with controllable stereoinversion, where the enantioselectivity switches to -72% eetrans through modification of the Fe-porphyrin cofactor. Complementary circular dichroism, nuclear magnetic resonance, and fluorescence titration experiments show that the porphyrin ligand of the cofactor participates in the regulation of the catalytic enantioselectivity via a synergetic effect with DNA residues at the active site. These findings underline the important role of cofactor modification in DNA catalysis and thus pave the way for the rational engineering of DNA-based biocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA