Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893358

RESUMEN

This paper proposes a low-noise amplifier (LNA) for terahertz communication systems. The amplifier is designed based on 90 nm InP high-electron-mobility transistor (HEMT) technology. In order to achieve high gain of LNA, the proposed amplifier adopts a five-stage amplification structure. At the same time, the use of staggered tuning technology has achieved a large bandwidth of terahertz low-noise amplification. In addition, capacitors are used for interstage isolation, sector lines are used for RF bypass, and Microstrip is used to design matching circuits. The entire LNA circuit was validated using accurate electromagnetic simulation. The simulation results show that at 140 GHz, the small signal gain is 25 dB, the noise figure is 4.4 dB, the input 1 dB compression point is -19 dBm, and the 3 dB bandwidth reaches 60 GHz (110-170 GHz), which validates the effectiveness of the design.

2.
J Dent Sci ; 18(4): 1621-1629, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799919

RESUMEN

Background/purpose: Minimally invasive endodontics has recently become popular in research. This study aimed to develop a new quantifiable straight-line minimally invasive endodontic cavity (SMIEC) for 3-rooted maxillary first molar based on the anatomical features of the coronal part of root canal. Materials and methods: Cone-beam computed tomography (CBCT) images of 80 teeth were converted into models in Mimics Research software. Anatomical features of the coronal part of root canal were measured to develop SMIECs with straight-line accesses to root canals in 3-matic Research software. Twenty models were randomly sampled and each was duplicated for 8 simulation groups: non-treated (NT), traditional endodontic cavity (TEC), ninja endodontic cavity (NEC) and 5 SMIECs. Post-simulation models were subjected to finite element analysis to detect von-Mises stresses in ABAQUS software. Results: Distributions of straight-line accesses to protogenetic root canals had certain manners, hence we developed 5 SMIECs. NEC and SMIECs had less hard tissue loss than TEC and presented different numerical rankings in different structures (P < 0.05). NEC had a less narrow surgery field than SMIECs except SMIEC2/4 (P < 0.05). The peak pericervical stresses of SMIECs were similar, lower than TEC and higher than NEC and NT (P < 0.05). The stress distributions of the 8 groups had certain manners. Conclusion: Five SMIECs with straight-line accesses to root canals were developed, whose biomechanical properties were worse than NEC but better than TEC. Having appropriate structure preservation and surgery field, SMIEC2/4 was a preferred SMIEC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA