Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207645

RESUMEN

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Síndrome de Prader-Willi , Adolescente , Humanos , Trastorno del Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicaciones , Trastornos del Neurodesarrollo/genética , Obesidad/complicaciones , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Proteínas
2.
J Med Genet ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849204

RESUMEN

INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.

3.
Genet Med ; 26(1): 101007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37860968

RESUMEN

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Linfocitos T CD8-positivos/metabolismo , Factores de Transcripción/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Metilación de ADN/genética , Proteínas Supresoras de Tumor/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Ann Neurol ; 94(2): 332-349, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062836

RESUMEN

OBJECTIVE: Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS: Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS: The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION: We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.


Asunto(s)
Discapacidad Intelectual , Neuroblastoma , Humanos , Células HEK293 , Fenotipo , Genotipo , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Canales de potasio activados por Sodio/genética
5.
Doc Ophthalmol ; 149(1): 47-52, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922562

RESUMEN

INTRODUCTION: Infantile nystagmus and foveal hypoplasia associated with AHR gene defects is a newly recognized and rare disorder. Our aim was to present a patient with a novel biallelic AHR pathogenic variant with electrophysiological evidence of chiasmal misrouting. MATERIALS AND METHODS: Complete ocular examination, fundus imaging, visual evoked potentials (VEP) and full-field electroretinography were performed at initial presentation. Genetic testing was performed by whole exome sequencing. RESULTS: Female patient of 6 years old presented a reduced best corrected visual acuity, an infantile nystagmus and a grade III typical foveal hypoplasia without ocular hypopigmentation. A crossed asymmetry was discovered on pattern onset/offset VEP. Genetic testing put in evidence a novel homozygous variant in AHR: c.2242del, p. (Gln748Lysfs*5). During 11-years follow-up period, BCVA gradually improved. There was no evidence of retinal degeneration. CONCLUSION: AHR gene defects could be associated with infantile nystagmus, foveal hypoplasia and chiasmal misrouting.


Asunto(s)
Electrorretinografía , Potenciales Evocados Visuales , Fóvea Central , Nistagmo Congénito , Humanos , Femenino , Fóvea Central/anomalías , Nistagmo Congénito/genética , Nistagmo Congénito/fisiopatología , Nistagmo Congénito/diagnóstico , Niño , Receptores de Hidrocarburo de Aril/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Agudeza Visual/fisiología , Proteínas Represoras/genética , Tomografía de Coherencia Óptica
6.
J Med Genet ; 60(12): 1245-1249, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37460203

RESUMEN

Albinism is a clinically and genetically heterogeneous group of conditions characterised by visual abnormalities and variable degrees of hypopigmentation. Multiple studies have demonstrated the clinical utility of genetic investigations in individuals with suspected albinism. Despite this, the variation in the provision of genetic testing for albinism remains significant. One key issue is the lack of a standardised approach to the analysis of genomic data from affected individuals. For example, there is variation in how different clinical genetic laboratories approach genotypes that involve incompletely penetrant alleles, including the common, 'hypomorphic' TYR c.1205G>A (p.Arg402Gln) [rs1126809] variant. Here, we discuss the value of genetic testing as a frontline diagnostic tool in individuals with features of albinism and propose a practice pattern for the analysis of genomic data from affected families.


Asunto(s)
Albinismo Oculocutáneo , Albinismo , Humanos , Albinismo/genética , Albinismo/diagnóstico , Albinismo Oculocutáneo/diagnóstico , Albinismo Oculocutáneo/genética , Pruebas Genéticas , Genotipo , Alelos
7.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37185208

RESUMEN

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagen , Genotipo , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
8.
Euro Surveill ; 29(6)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333936

RESUMEN

Crimean-Congo haemorrhagic fever (CCHF), a potentially severe zoonotic viral disease causing fever and haemorrhagic manifestations in humans. As the Crimean-Congo haemorrhagic fever virus (CCHFV) has been detected in ticks in Spain and antibodies against the virus in ruminant sera in Corsica, it was necessary to know more about the situation in France. In 2022-2023, CCHFV was detected in 155 ticks collected from horses and cattle in southern France.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Garrapatas , Humanos , Animales , Bovinos , Caballos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Zoonosis , Francia/epidemiología
9.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
10.
Clin Genet ; 103(3): 358-363, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36411955

RESUMEN

Aminoacyl-tRNA synthetases are enzymes that ensure accurate protein synthesis. Variants of the dual-functional cytoplasmic human glutamyl-prolyl-tRNA synthetase, EPRS1, have been associated with leukodystrophy, diabetes and bone disease. Here, we report compound heterozygous variants in EPRS1 in a 4-year-old female patient presenting with psychomotor developmental delay, seizures and deafness. Functional studies of these two missense mutations support major defects in enzymatic function in vitro and contributed to confirmation of the diagnosis.


Asunto(s)
Aminoacil-ARNt Sintetasas , Sordera , Epilepsia , Femenino , Humanos , Preescolar , Aminoacilación , Aminoacil-ARNt Sintetasas/genética , Mutación , Epilepsia/diagnóstico , Epilepsia/genética , Convulsiones/genética , Sordera/genética
11.
J Med Genet ; 59(10): 965-975, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34930816

RESUMEN

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.


Asunto(s)
Proteínas Argonautas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Aminoácidos/genética , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , ARN Mensajero , Proteínas Argonautas/genética
12.
Am J Med Genet A ; 188(9): 2627-2636, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35789103

RESUMEN

We present the phenotypes of seven previously unreported patients with Marbach-Schaaf neurodevelopmental syndrome, all carrying the same recurrent heterozygous missense variant c.1003C>T (p.Arg335Trp) in PRKAR1B. Clinical features of this cohort include global developmental delay and reduced sensitivity to pain, as well as behavioral anomalies. Only one of the seven patients reported here was formally diagnosed with autism spectrum disorder (ASD), while ASD-like features were described in others, overall indicating a lower prevalence of ASD in Marbach-Schaaf neurodevelopmental syndrome than previously assumed. The clinical spectrum of the current cohort is similar to that reported in the initial publication, delineating a complex developmental disorder with behavioral and neurologic features. PRKAR1B encodes the regulatory subunit R1ß of the protein kinase A complex (PKA), and is expressed in the adult and embryonal central nervous system in humans. PKA is crucial to a plethora of cellular signaling pathways, and its composition of different regulatory and catalytic subunits is cell-type specific. We discuss potential molecular disease mechanisms underlying the patients' phenotypes with respect to the different known functions of PKA in neurons, and the phenotypes of existing R1ß-deficient animal models.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Adulto , Animales , Trastorno del Espectro Autista/genética , Estudios de Cohortes , Humanos , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome
13.
BMC Neurol ; 22(1): 53, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151251

RESUMEN

BACKGROUND: VPS13D is a large ubiquitin-binding protein playing an essential role in mitophagy by regulating mitochondrial fission. Recently, VPS13D biallelic pathogenic variants have been reported in patients displaying variable neurological phenotypes, with an autosomic recessive inheritance. The objectives of the study were to determine the genetic etiology of a patient with early onset sporadic progressive spastic ataxia, and to investigate the pathogenicity of VPS13D variants through functional studies on patient's skin fibroblasts. CASE PRESENTATION: We report the case of a 51-year-old patient with spastic ataxia, with an acute onset of the disease at age 7. Walking difficulties slowly worsened over time, with the use of a wheelchair since age 26. We have used trio-based whole-exome sequencing (WES) to identify genes associated with spastic ataxia. The impact of the identified variants on mitochondrial function was assessed in patient's fibroblasts by imaging mitochondrial network and measuring level of individual OXPHOS complex subunits. Compound heterozygous variants were identified in VPS13D: c.946C > T, p.Arg316* and c.12416C > T, p.(Ala4139Val). Primary fibroblasts obtained from this patient revealed an altered mitochondrial morphology, and a decrease in levels of proteins from complex I, III and IV. CONCLUSIONS: Our findings confirmed implication of VPS13D in spastic ataxia and provided further support for mitochondrial defects in patient's skin fibroblasts with VPS13D variants. This report of long-term follow up showed a slowly progressive course of the spastic paraplegia with cerebellar features. Furthermore, the performed functional studies could be used as biomarker helping diagnosis of VPS13D-related neurological disorders when molecular results are uneasy to interpret.


Asunto(s)
Atrofia Óptica , Paraplejía Espástica Hereditaria , Ataxias Espinocerebelosas , Adulto , Niño , Humanos , Discapacidad Intelectual , Persona de Mediana Edad , Espasticidad Muscular , Mutación , Linaje , Fenotipo , Proteínas , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Secuenciación del Exoma
14.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34415322

RESUMEN

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Asunto(s)
Alelos , Variación Genética/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Antígenos de Histocompatibilidad Menor/genética , Trastornos del Neurodesarrollo/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Leucocitos Mononucleares/fisiología , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje
15.
Hum Brain Mapp ; 42(17): 5677-5688, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34480503

RESUMEN

Sex hormones estrogen (EST) and progesterone (PROG) have received increased attention for their important physiological action outside of reproduction. While studies have shown that EST and PROG have significant impacts on brain function, their impact on the cerebrovascular system in humans remains largely unknown. To address this, we used a multi-modal magnetic resonance imaging (MRI) approach to investigate the link between serum hormones in the follicular phase and luteal phase of the menstrual cycle (MC) with measures of cerebrovascular function (cerebral blood flow [CBF]) and structure (intracranial artery diameter). Fourteen naturally cycling women were recruited and assessed at two-time points of their MC. CBF was derived from pseudo-continuous arterial spin labeling while diameters of the internal carotid and basilar artery was assessed using time of flight magnetic resonance angiography, blood samples were performed after the MRI. Results show that PROG and EST had opposing and spatially distinct effects on CBF: PROG correlated negatively with CBF in anterior brain regions (r = -.86, p < .01), while EST correlations were positive, yet weak and most prominent in posterior areas (r = .78, p < .01). No significant correlations between either hormone or intracranial artery diameter were observed. These results show that EST and PROG have opposing and regionally distinct effects on CBF and that this relationship is likely not due to interactions with large intracranial arteries. Considering that CBF in healthy women appears tightly linked to their current hormonal state, future studies should consider assessing MC-related hormone fluctuations in the design of functional MRI studies in this population.


Asunto(s)
Arteria Basilar/fisiología , Arteria Carótida Interna/fisiología , Circulación Cerebrovascular/fisiología , Estrógenos/sangre , Ciclo Menstrual/fisiología , Progesterona/sangre , Adulto , Arteria Basilar/diagnóstico por imagen , Arteria Carótida Interna/diagnóstico por imagen , Humanos , Angiografía por Resonancia Magnética , Acoplamiento Neurovascular/fisiología , Marcadores de Spin , Adulto Joven
16.
Genet Med ; 23(3): 479-487, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33100333

RESUMEN

PURPOSE: Albinism is a clinically and genetically heterogeneous condition. Despite analysis of the 20 known genes, ~30% patients remain unsolved. We aimed to identify new genes involved in albinism. METHODS: We sequenced a panel of genes with known or predicted involvement in melanogenesis in 230 unsolved albinism patients. RESULTS: We identified variants in the Dopachrome tautomerase (DCT) gene in two patients. One was compound heterozygous for a 14-bp deletion in exon 9 and c.118T>A p.(Cys40Ser). The second was homozygous for c.183C>G p.(Cys61Trp). Both patients had mild hair and skin hypopigmentation, and classical ocular features. CRISPR-Cas9 was used in C57BL/6J mice to create mutations identical to the missense variants carried by the patients, along with one loss-of-function indel. When bred to homozygosity the three mutations revealed hypopigmentation of the coat, milder for Cys40Ser compared with Cys61Trp or the frameshift mutation. Histological analysis identified significant hypopigmentation of the retinal pigmented epithelium (RPE) indicating that defective RPE melanogenesis could be associated with eye and vision defects. DCT loss of function in zebrafish embryos elicited hypopigmentation both in melanophores and RPE cells. CONCLUSION: DCT is the gene for a new type of oculocutaneous albinism that we propose to name OCA8.


Asunto(s)
Albinismo Oculocutáneo , Pez Cebra , Albinismo Oculocutáneo/genética , Animales , Humanos , Oxidorreductasas Intramoleculares , Ratones , Ratones Endogámicos C57BL , Mutación
17.
Clin Genet ; 100(4): 468-477, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212383

RESUMEN

We describe the clinical features of nine unrelated individuals with rare de novo missense or in-frame deletions/duplications within the "HX motif" of exon 7 of ATN1. We previously proposed that individuals with such variants should be considered as being affected by the syndromic condition of congenital hypotonia, epilepsy, developmental delay, and digital anomalies (CHEDDA), distinct from dentatorubral-pallidoluysian atrophy (DRPLA) secondary to expansion variants in exon 5 of ATN1. We confirm that the universal phenotypic features of CHEDDA are distinctive facial features and global developmental delay. Infantile hypotonia and minor hand and feet differences are common and can present as arthrogryposis. Common comorbidities include severe feeding difficulties, often requiring gastrostomy support, as well as visual and hearing impairments. Epilepsy and congenital malformations of the brain, heart, and genitourinary systems are frequent but not universal. Our study confirms the clinical entity of CHEDDA secondary to a mutational signature restricted to exon 7 of ATN1. We propose a clinical schedule for assessment upon diagnosis, surveillance, and early intervention including the potential of neuroimaging for prognostication.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Preescolar , Facies , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Síndrome
18.
Platelets ; 32(3): 420-423, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245340

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a rare form of syndromic oculocutaneous albinism caused by disorders in lysosome-related organelles. Ten genes are associated with different forms of HPS. HPS type 9 (HPS-9) is caused by biallelic variants of BLOC1S6. To date, only three patients with HPS-9 have been reported. We described one patient presenting with ocular features of albinism. Genetic analysis revealed two compound heterozygous variants in the BLOC1S6 gene. Extended hematological studies confirmed the platelet storage pool disease with absence of dense granules and abnormal platelet aggregation. By reviewing the previous published cases we confirm the phenotype of HPS-9 patients. This patient is the only one described with dextrocardia and abnormal psychomotor development.


Asunto(s)
Albinismo/sangre , Plaquetas/metabolismo , Síndrome de Hermanski-Pudlak/sangre , Femenino , Humanos , Lactante
19.
Emerg Infect Dis ; 26(5): 1041-1044, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32310061

RESUMEN

We conducted a serologic survey for Crimean-Congo hemorrhagic fever virus antibodies in livestock (cattle, sheep, and goats; N = 3,890) on Corsica (island of France) during 2014-2016. Overall, 9.1% of animals were seropositive, suggesting this virus circulates on Corsica. However, virus identification is needed to confirm these results.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Anticuerpos Antivirales , Bovinos , Francia/epidemiología , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Ganado , Ovinos
20.
J Gene Med ; 22(8): e3197, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32246869

RESUMEN

BACKGROUND: The development of whole-exome sequencing (WES) and whole-genome sequencing (WGS) for clinical purposes now allows the identification of multiple pathogenic variants in patients with a rare disease. This occurs even when a single causative gene was initially suspected. We report the case of an 8-year-old patient with global developmental delays and dysmorphic features, with a possibly pathogenic variant in three distinct genes. METHODS: Trio-based exome sequencing was performed by IntegraGen SA (Evry, France), on an Illumina HiSeq4000 (Illumina, San Diego, CA, USA). Sanger sequencing was performed to confirm the variants that were found. RESULTS: WES showed the presence of three possibly deleterious variants: KMT2A: c.9068delA;p.Gln3023Argfs*3 de novo, PAX3: c.530C>G;p.Ala177Gly de novo and DLG3: c.127delG;p.Asp43Metfs*22 hemizygous inherited from the mother. KMT2A pathogenic variants are involved in Wiedemann-Steiner syndrome, and PAX3 is the gene responsible for Waardenburg syndrome. DLG3 variants have been described in a non-syndromic X-related intellectual disability. CONCLUSIONS: Considering the dysmorphic features and intellectual disability presented by this patient, these three variants were imputed as pathogenic and their association was considered responsible for his phenotype. Dual molecular diagnoses have already been found by WES in several cohorts with an average of diagnostic yield of 7%. This case demonstrates and reminds us of the importance of analyzing exomes rigorously and exhaustively because, in some cases (< 10%), it can explain superimposed traits or blended phenotypes.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/genética , Síndrome de Beckwith-Wiedemann , Niño , Predisposición Genética a la Enfermedad , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/genética , Factor de Transcripción PAX3/genética , Factores de Transcripción/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA