Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 68(1): 233-246.e5, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28943312

RESUMEN

Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific "affimer" reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner.


Asunto(s)
GTP Fosfohidrolasas/química , Proteínas Mitocondriales/química , Sondas Moleculares/química , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinética , Lisina/química , Lisina/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Proteínas Supresoras de Tumor , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Mol Cell ; 58(1): 95-109, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25752577

RESUMEN

Protein ubiquitination regulates many cellular processes via attachment of structurally and functionally distinct ubiquitin (Ub) chains. Several atypical chain types have remained poorly characterized because the enzymes mediating their assembly and receptors with specific binding properties have been elusive. We found that the human HECT E3 ligases UBE3C and AREL1 assemble K48/K29- and K11/K33-linked Ub chains, respectively, and can be used in combination with DUBs to generate K29- and K33-linked chains for biochemical and structural analyses. Solution studies indicate that both chains adopt open and dynamic conformations. We further show that the N-terminal Npl4-like zinc finger (NZF1) domain of the K29/K33-specific deubiquitinase TRABID specifically binds K29/K33-linked diUb, and a crystal structure of this complex explains TRABID specificity and suggests a model for chain binding by TRABID. Our work uncovers linkage-specific components in the Ub system for atypical K29- and K33-linked Ub chains, providing tools to further understand these unstudied posttranslational modifications.


Asunto(s)
Endopeptidasas/química , Lisina/química , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
EMBO J ; 34(3): 307-25, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25527291

RESUMEN

The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which ß5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system.


Asunto(s)
Fosfoproteínas/metabolismo , Poliubiquitina/metabolismo , Multimerización de Proteína/fisiología , Ubiquitinación/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica/fisiología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Hidrólisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosfoproteínas/genética , Fosforilación/fisiología , Poliubiquitina/genética , Estructura Terciaria de Proteína , Serina/genética , Serina/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
4.
Methods Mol Biol ; 1844: 73-84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242704

RESUMEN

The availability of different polyubiquitin chains of specific linkage types has changed the appreciation of the specificity in the ubiquitin (Ub) system. Numerous E2 Ub-conjugating enzymes and E3 Ub ligases, Ub-binding domains (UBDs), and deubiquitinases (DUBs) are now known to assemble, bind, or hydrolyze individual linkage types, respectively. Biochemical and structural studies of these processes require milligram quantities of pure polyUb. Here we describe protocols that allow the enzymatic synthesis and purification of six of the eight homotypic polyUb chains through the use of chain-specific Ub ligases and DUBs.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Ubiquitina/metabolismo , Humanos , Mutación , Poliubiquitina/química , Poliubiquitina/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
5.
Nat Struct Mol Biol ; 24(11): 920-930, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945249

RESUMEN

Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.


Asunto(s)
Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Humanos , Unión Proteica , Proteínas Quinasas/metabolismo , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
6.
Nat Microbiol ; 2: 17063, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28481331

RESUMEN

Cell-autonomous immunity relies on the ubiquitin coat surrounding cytosol-invading bacteria functioning as an 'eat-me' signal for xenophagy. The origin, composition and precise mode of action of the ubiquitin coat remain incompletely understood. Here, by studying Salmonella Typhimurium, we show that the E3 ligase LUBAC generates linear (M1-linked) polyubiquitin patches in the ubiquitin coat, which serve as antibacterial and pro-inflammatory signalling platforms. LUBAC is recruited via its subunit HOIP to bacterial surfaces that are no longer shielded by host membranes and are already displaying ubiquitin, suggesting that LUBAC amplifies and refashions the ubiquitin coat. LUBAC-synthesized polyubiquitin recruits Optineurin and Nemo for xenophagy and local activation of NF-κB, respectively, which independently restrict bacterial proliferation. In contrast, the professional cytosol-dwelling Shigella flexneri escapes from LUBAC-mediated restriction through the antagonizing effects of the effector E3 ligase IpaH1.4 on deposition of M1-linked polyubiquitin and subsequent recruitment of Nemo and Optineurin. We conclude that LUBAC-synthesized M1-linked ubiquitin transforms bacterial surfaces into signalling platforms for antibacterial immunity reminiscent of antiviral assemblies on mitochondria.


Asunto(s)
Autofagia , Citosol/microbiología , FN-kappa B/metabolismo , Salmonella typhimurium/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Inmunidad Innata , Ratones , Poliubiquitina/metabolismo , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Shigella flexneri/inmunología , Shigella flexneri/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA