Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 143(2): 306-17, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657774

RESUMEN

Cardiogenesis involves the coordinated regulation of multiple biological processes by a finite set of transcription factors (TFs). Here, we show that the Forkhead TFs Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu), which govern cardiac progenitor cell divisions by regulating Polo kinase activity, play an additional, mutually redundant role in specifying the cardiac mesoderm (CM) as eliminating the functions of both Forkhead genes in the same Drosophila embryo results in defective hearts with missing hemisegments. This process is mediated by the Forkhead TFs regulating the fibroblast growth factor receptor Heartless (Htl) and the Wnt receptor Frizzled (Fz): CHES-1-like and jumu exhibit synergistic genetic interactions with htl and fz in CM specification, thereby implying that they function through the same genetic pathways, and transcriptionally activate the expression of both receptor-encoding genes. Furthermore, ectopic overexpression of either htl or fz in the mesoderm partially rescues the defective CM specification phenotype in embryos lacking both Forkhead genes. Together, these data emphasize the functional redundancy that leads to robustness in the cardiac progenitor specification process, and illustrate the pleiotropic functions of Forkhead TFs in different aspects of cardiogenesis.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Miocardio/citología , Miocardio/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Drosophila , Proteínas de Drosophila , Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Interferencia de ARN , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
2.
Development ; 141(4): 878-88, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496624

RESUMEN

The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.


Asunto(s)
Diferenciación Celular/fisiología , División Celular/fisiología , Drosophila/crecimiento & desarrollo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/crecimiento & desarrollo , Células Madre/fisiología , Animales , Inteligencia Artificial , Inmunoprecipitación de Cromatina , Clasificación/métodos , Drosophila/citología , Regulación del Desarrollo de la Expresión Génica/genética , Mutagénesis , Mioblastos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 43(3): 1726-39, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25609699

RESUMEN

Here we used discriminative training methods to uncover the chromatin, transcription factor (TF) binding and sequence features of enhancers underlying gene expression in individual cardiac cells. We used machine learning with TF motifs and ChIP data for a core set of cardiogenic TFs and histone modifications to classify Drosophila cell-type-specific cardiac enhancer activity. We show that the classifier models can be used to predict cardiac cell subtype cis-regulatory activities. Associating the predicted enhancers with an expression atlas of cardiac genes further uncovered clusters of genes with transcription and function limited to individual cardiac cell subtypes. Further, the cell-specific enhancer models revealed chromatin, TF binding and sequence features that distinguish enhancer activities in distinct subsets of heart cells. Collectively, our results show that computational modeling combined with empirical testing provides a powerful platform to uncover the enhancers, TF motifs and gene expression profiles which characterize individual cardiac cell fates.


Asunto(s)
Drosophila/genética , Elementos de Facilitación Genéticos , Miocardio/metabolismo , Transcripción Genética , Animales , Animales Modificados Genéticamente , Drosophila/citología , Regulación de la Expresión Génica , Miocardio/citología
4.
Nat Methods ; 10(8): 774-80, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23852450

RESUMEN

Transcriptional enhancers are a primary mechanism by which tissue-specific gene expression is achieved. Despite the importance of these regulatory elements in development, responses to environmental stresses and disease, testing enhancer activity in animals remains tedious, with a minority of enhancers having been characterized. Here we describe 'enhancer-FACS-seq' (eFS) for highly parallel identification of active, tissue-specific enhancers in Drosophila melanogaster embryos. Analysis of enhancers identified by eFS as being active in mesodermal tissues revealed enriched DNA binding site motifs of known and putative, previously uncharacterized mesodermal transcription factors. Naive Bayes classifiers using transcription factor binding site motifs accurately predicted mesodermal enhancer activity. Application of eFS to other cell types and organisms should accelerate the cataloging of enhancers and understanding how transcriptional regulation is encoded in them.


Asunto(s)
Secuencias de Aminoácidos , Drosophila melanogaster/genética , Citometría de Flujo/métodos , Regulación del Desarrollo de la Expresión Génica , Animales , Sitios de Unión , Drosophila melanogaster/embriología , Elementos de Facilitación Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Mesodermo , Análisis de Secuencia de ADN
5.
Development ; 139(6): 1164-74, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22296846

RESUMEN

A subfamily of Drosophila homeodomain (HD) transcription factors (TFs) controls the identities of individual muscle founder cells (FCs). However, the molecular mechanisms by which these TFs generate unique FC genetic programs remain unknown. To investigate this problem, we first applied genome-wide mRNA expression profiling to identify genes that are activated or repressed by the muscle HD TFs Slouch (Slou) and Muscle segment homeobox (Msh). Next, we used protein-binding microarrays to define the sequences that are bound by Slou, Msh and other HD TFs that have mesodermal expression. These studies revealed that a large class of HDs, including Slou and Msh, predominantly recognize TAAT core sequences but that each HD also binds to unique sites that deviate from this canonical motif. To understand better the regulatory specificity of an individual FC identity HD, we evaluated the functions of atypical binding sites that are preferentially bound by Slou relative to other HDs within muscle enhancers that are either activated or repressed by this TF. These studies showed that Slou regulates the activities of particular myoblast enhancers through Slou-preferred sequences, whereas swapping these sequences for sites that are capable of binding to multiple HD family members does not support the normal regulatory functions of Slou. Moreover, atypical Slou-binding sites are overrepresented in putative enhancers associated with additional Slou-responsive FC genes. Collectively, these studies provide new insights into the roles of individual HD TFs in determining cellular identity, and suggest that the diversity of HD binding preferences can confer regulatory specificity.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculos/embriología , Mioblastos/fisiología , Animales , Secuencia de Bases , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Development ; 139(8): 1457-66, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22378636

RESUMEN

A common theme in developmental biology is the repeated use of the same gene in diverse spatial and temporal domains, a process that generally involves transcriptional regulation mediated by multiple separate enhancers, each with its own arrangement of transcription factor (TF)-binding sites and associated activities. Here, by contrast, we show that the expression of the Drosophila Nidogen (Ndg) gene at different embryonic stages and in four mesodermal cell types is governed by the binding of multiple cell-specific Forkhead (Fkh) TFs - including Biniou (Bin), Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu) - to three functionally distinguishable Fkh-binding sites in the same enhancer. Whereas Bin activates the Ndg enhancer in the late visceral musculature, CHES-1-like cooperates with Jumu to repress this enhancer in the heart. CHES-1-like also represses the Ndg enhancer in a subset of somatic myoblasts prior to their fusion to form multinucleated myotubes. Moreover, different combinations of Fkh sites, corresponding to two different sequence specificities, mediate the particular functions of each TF. A genome-wide scan for the occurrence of both classes of Fkh domain recognition sites in association with binding sites for known cardiac TFs showed an enrichment of combinations containing the two Fkh motifs in putative enhancers found within the noncoding regions of genes having heart expression. Collectively, our results establish that different cell-specific members of a TF family regulate the activity of a single enhancer in distinct spatiotemporal domains, and demonstrate how individual binding motifs for a TF class can differentially influence gene expression.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Algoritmos , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila melanogaster , Elementos de Facilitación Genéticos , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Interferencia de ARN , Homología de Secuencia de Aminoácido , Transcripción Genética
7.
PLoS Genet ; 8(3): e1002531, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22412381

RESUMEN

Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA-based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type-specific developmental gene expression patterns.


Asunto(s)
Inteligencia Artificial , Sitios de Unión , Drosophila melanogaster , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Animales , Linaje de la Célula , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Músculos/citología , Filogenia , Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 109(50): 20768-73, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184988

RESUMEN

Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis-regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Genoma de los Insectos , Desarrollo de Músculos/genética , Factores Reguladores Miogénicos/genética , Animales , Animales Modificados Genéticamente , Inteligencia Artificial , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Datos de Secuencia Molecular , Mioblastos/citología , Mioblastos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Biología de Sistemas , Transcriptoma
9.
Development ; 137(3): 457-66, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20056681

RESUMEN

Hox transcription factors control many aspects of animal morphogenetic diversity. The segmental pattern of Drosophila larval muscles shows stereotyped variations along the anteroposterior body axis. Each muscle is seeded by a founder cell and the properties specific to each muscle reflect the expression by each founder cell of a specific combination of 'identity' transcription factors. Founder cells originate from asymmetric division of progenitor cells specified at fixed positions. Using the dorsal DA3 muscle lineage as a paradigm, we show here that Hox proteins play a decisive role in establishing the pattern of Drosophila muscles by controlling the expression of identity transcription factors, such as Nautilus and Collier (Col), at the progenitor stage. High-resolution analysis, using newly designed intron-containing reporter genes to detect primary transcripts, shows that the progenitor stage is the key step at which segment-specific information carried by Hox proteins is superimposed on intrasegmental positional information. Differential control of col transcription by the Antennapedia and Ultrabithorax/Abdominal-A paralogs is mediated by separate cis-regulatory modules (CRMs). Hox proteins also control the segment-specific number of myoblasts allocated to the DA3 muscle. We conclude that Hox proteins both regulate and contribute to the combinatorial code of transcription factors that specify muscle identity and act at several steps during the muscle-specification process to generate muscle diversity.


Asunto(s)
Proteínas de Homeodominio/fisiología , Músculos/embriología , Animales , Tipificación del Cuerpo , Drosophila/embriología , Embrión no Mamífero , Desarrollo Embrionario , Morfogénesis , Músculos/citología , Células Madre/citología , Factores de Transcripción/fisiología
10.
PLoS Genet ; 2(2): e16, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16482229

RESUMEN

An important but largely unmet challenge in understanding the mechanisms that govern the formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic, and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from 12 genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasets--based on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genes--provisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true-positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially expanded framework for further studies of this model developmental system.


Asunto(s)
Biología Computacional/métodos , Regulación del Desarrollo de la Expresión Génica , Técnicas Genéticas , Mioblastos/fisiología , Animales , Drosophila melanogaster , Regulación de la Expresión Génica , Genotipo , Hibridación in Situ , Mesodermo/metabolismo , Desarrollo de Músculos , Músculos/metabolismo , Mioblastos/metabolismo , Interferencia de ARN
11.
Methods Mol Biol ; 475: 299-314, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18979251

RESUMEN

We have developed an integrated genetic, genomic, and computational approach to identify and characterize genes involved in myoblast fusion in Drosophila. We first used fluorescence-activated cell sorting to purify mesodermal cells both from wild-type embryos and from 12 variant genotypes in which muscle development is perturbed in known ways. Then, we obtained gene expression profiles for the purified cells by hybridizing isolated mesodermal RNA to Affymetrix GeneChip arrays. These data were subsequently compounded into a statistical metaanalysis that predicts myoblast subtype-specific gene expression signatures that were later validated by in situ hybridization experiments. Finally, we analyzed the myogenic functions of a subset of these myoblast genes using a double-stranded RNA interference assay in living embryos expressing green fluorescent protein under control of a muscle-specific promoter. This experimental strategy led to the identification of several previously uncharacterized genes required for myoblast fusion in Drosophila.


Asunto(s)
Fusión Celular/métodos , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Genómica/métodos , Mioblastos/citología , Animales , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas Fluorescentes Verdes/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/aislamiento & purificación , Interferencia de ARN , Reproducibilidad de los Resultados
12.
PLoS Comput Biol ; 2(5): e53, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16733548

RESUMEN

While combinatorial models of transcriptional regulation can be inferred for metazoan systems from a priori biological knowledge, validation requires extensive and time-consuming experimental work. Thus, there is a need for computational methods that can evaluate hypothesized cis regulatory codes before the difficult task of experimental verification is undertaken. We have developed a novel computational framework (termed "CodeFinder") that integrates transcription factor binding site and gene expression information to evaluate whether a hypothesized transcriptional regulatory model (TRM; i.e., a set of co-regulating transcription factors) is likely to target a given set of co-expressed genes. Our basic approach is to simultaneously predict cis regulatory modules (CRMs) associated with a given gene set and quantify the enrichment for combinatorial subsets of transcription factor binding site motifs comprising the hypothesized TRM within these predicted CRMs. As a model system, we have examined a TRM experimentally demonstrated to drive the expression of two genes in a sub-population of cells in the developing Drosophila mesoderm, the somatic muscle founder cells. This TRM was previously hypothesized to be a general mode of regulation for genes expressed in this cell population. In contrast, the present analyses suggest that a modified form of this cis regulatory code applies to only a subset of founder cell genes, those whose gene expression responds to specific genetic perturbations in a similar manner to the gene on which the original model was based. We have confirmed this hypothesis by experimentally discovering six (out of 12 tested) new CRMs driving expression in the embryonic mesoderm, four of which drive expression in founder cells.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Músculos/embriología , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias de Aminoácidos , Animales , Análisis por Conglomerados , Mesodermo/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Alas de Animales/embriología
13.
Sci STKE ; 2003(192): PE30, 2003 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-12881613

RESUMEN

The new technology of RNA interference (RNAi) is allowing high-throughput screening of cells to examine many biological processes. Michelson discusses one such system in which the Drosophila Hedgehog (Hh) pathway was analyzed by systematic genome-wide RNAi analysis. The results not only suggest unexpected overlap in the Hh and Wingless (Wg) pathways, but also provide proof of principle for the development of high-throughput assays using RNAi techniques.


Asunto(s)
Proteínas de Drosophila/fisiología , Interferencia de ARN/fisiología , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas Hedgehog , Humanos , Transducción de Señal/genética
14.
PLoS One ; 10(10): e0141066, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26485529

RESUMEN

Here we used predictive gene expression signatures within a multi-species framework to identify the genes that underlie cardiac cell fate decisions in differentiating embryonic stem cells. We show that the overlapping orthologous mouse and human genes are the most accurate candidate cardiogenic genes as these genes identified the most conserved developmental pathways that characterize the cardiac lineage. An RNAi-based screen of the candidate genes in Drosophila uncovered numerous novel cardiogenic genes. shRNA knockdown combined with transcriptome profiling of the newly-identified transcription factors zinc finger protein 503 and zinc finger E-box binding homeobox 2 and the well-known cardiac regulatory factor NK2 homeobox 5 revealed that zinc finger E-box binding homeobox 2 activates terminal differentiation genes required for cardiomyocyte structure and function whereas zinc finger protein 503 and NK2 homeobox 5 are required for specification of the cardiac lineage. We further demonstrated that an essential role of NK2 homeobox 5 and zinc finger protein 503 in specification of the cardiac lineage is the repression of gene expression programs characteristic of alternative cell fates. Collectively, these results show that orthologous gene expression signatures can be used to identify conserved cardiogenic pathways.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Drosophila/genética , Células Madre Embrionarias/citología , Epigenómica , Miocitos Cardíacos/citología , Organogénesis/genética , Animales , Inmunoprecipitación de Cromatina , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN/fisiología , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
15.
Physiol Genomics ; 10(3): 131-43, 2002 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-12209016

RESUMEN

One of the foremost challenges of 21st century biological research will be to decipher the complex genetic regulatory networks responsible for embryonic development. The recent explosion of whole genome sequence data and of genome-wide transcriptional profiling methods, such as microarrays, coupled with the development of sophisticated computational tools for exploiting and analyzing genomic data, provide a significant starting point for regulatory network analysis. In this article we review some of the main methodological issues surrounding genome annotation, transcriptional profiling, and computational prediction of cis-regulatory elements and discuss how the power of model genetic organisms can be used to experimentally verify and extend the results of genomic research.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Biología Computacional/métodos , Simulación por Computador , Drosophila/embriología , Drosophila/genética , Perfilación de la Expresión Génica , Genoma , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transcripción Genética/genética
16.
PLoS One ; 8(7): e69385, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922708

RESUMEN

Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.


Asunto(s)
ADN/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesodermo/citología , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Elementos de Facilitación Genéticos , Genes de Insecto , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Mutagénesis/genética , Especificidad de Órganos/genética , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Dev Cell ; 23(1): 97-111, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22814603

RESUMEN

The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic, and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis.


Asunto(s)
División Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Factores de Transcripción Forkhead/metabolismo , Corazón/embriología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mitosis/genética , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/genética , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética
19.
Curr Opin Genet Dev ; 18(6): 521-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18848887

RESUMEN

Developmental regulatory networks constitute all the interconnections among molecular components that guide embryonic development. Developmental transcriptional regulatory networks (TRNs) are circuits of transcription factors and cis-acting DNA elements that control expression of downstream regulatory and effector genes. Developmental networks comprise functional subnetworks that are deployed sequentially in requisite spatiotemporal patterns. Here, we discuss integrative genomics approaches for elucidating TRNs, with an emphasis on those involved in Drosophila mesoderm development and mammalian embryonic stem cell maintenance and differentiation. As examples of regulatory subnetworks, we consider the transcriptional and signaling regulation of genes that interact to control cell morphology and migration. Finally, we describe integrative experimental and computational strategies for defining the entirety of molecular interactions underlying developmental regulatory networks.


Asunto(s)
Biología Computacional/métodos , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Mamíferos/genética , Modelos Genéticos , Transducción de Señal/genética , Animales , Drosophila/crecimiento & desarrollo , Células Madre Embrionarias/metabolismo , Mamíferos/crecimiento & desarrollo
20.
Development ; 134(24): 4469-78, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18039972

RESUMEN

The molecular mechanisms underlying muscle guidance and formation of myotendinous junctions are poorly understood both in vertebrates and in Drosophila. We have identified a novel gene that is essential for Drosophila embryonic muscles to form proper projections and stable attachments to epidermal tendon cells. Loss-of-function of this gene - which we named perdido (perd)-results in rounded, unattached muscles. perd is expressed prior to myoblast fusion in a subset of muscle founder cells, and it encodes a conserved single-pass transmembrane cell adhesion protein that contains laminin globular extracellular domains and a small intracellular domain with a C-terminal PDZ-binding consensus sequence. Biochemical experiments revealed that the Perd intracellular domain interacts directly with one of the PDZ domains of the Glutamate receptor interacting protein (Grip), another factor required for formation of proper muscle projections. In addition, Perd is necessary to localize Grip to the plasma membrane of developing myofibers. Using a newly developed, whole-embryo RNA interference assay to analyze genetic interactions, perd was shown to interact not only with Grip but also with multiple edematous wings, which encodes one subunit of the alpha PS1-beta PS integrin expressed in tendon cells. These experiments uncovered a previously unrecognized role for the alpha PS1-beta PS integrin in the formation of muscle projections during early stages of myotendinous junction development. We propose that Perd regulates projection of myotube processes toward and subsequent differentiation of the myotendinous junction by priming formation of a protein complex through its intracellular interaction with Grip and its transient engagement with the tendon cell-expressed laminin-binding alpha PS1-beta PS integrin.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Cadenas alfa de Integrinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Cadenas alfa de Integrinas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mutación , Mioblastos/citología , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA