Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2221619120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579148

RESUMEN

The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Cambio Climático , Bosques , Árboles/fisiología , Pinus/microbiología
2.
Mycorrhiza ; 28(3): 315-328, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29504037

RESUMEN

Despite covering vast areas of boreal North America, the ecological factors structuring mycorrhizal fungal communities in peatland forests are relatively poorly understood. To assess how these communities vary by age (younger vs. mature), habitat (fen vs. bog), and host (conifer trees vs. ericaceous shrub), we sampled the roots of two canopy trees (Larix laricina and Picea mariana) and an ericaceous shrub (Ledum groenlandicum) at four sites in northern Minnesota, USA. To characterize the specific influence of host co-occurrence on mycorrhizal fungal community structure, we also conducted a greenhouse bioassay using the same three hosts. Root samples were assessed using Illumina-based high-throughput sequencing (HTS) of the ITS1 rRNA gene region. As expected, we found that the relative abundance of ectomycorrhizal fungi was high on both Larix and Picea, whereas ericoid mycorrhizal fungi had high relative abundance only on Ledum. Ericoid mycorrhizal fungal richness was significantly higher in mature forests, in bogs, and on Ledum hosts, while ectomycorrhizal fungal richness did not differ significantly across any of these three variables. In terms of community composition, ericoid mycorrhizal fungi were more strongly influenced by host while ectomycorrhizal fungi were more influenced by habitat. In the greenhouse bioassay, the presence of Ledum had consistently stronger effects on the composition of ectomycorrhizal, ericoid, and ericoid-ectomycorrhizal fungal communities than either Larix or Picea. Collectively, these results suggest that partitioning HTS-based datasets by mycorrhizal type in boreal peatland forests is important, as their responses to rapidly changing environmental conditions are not likely to be uniform.


Asunto(s)
Bosques , Larix/microbiología , Ledum/microbiología , Micorrizas/fisiología , Picea/microbiología , Humedales , Código de Barras del ADN Taxonómico , Minnesota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA