Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29302076

RESUMEN

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas de la Membrana/genética , Células Precursoras de Oligodendrocitos/metabolismo , Esquizofrenia/genética , Adulto , Antígenos/genética , Diferenciación Celular/fisiología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Imagen de Difusión Tensora , Familia , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Mutación/genética , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/metabolismo , Linaje , Proteoglicanos/genética , Esquizofrenia/metabolismo , Sustancia Blanca/metabolismo
2.
Hum Mutat ; 39(12): 2008-2024, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30184290

RESUMEN

The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación con Ganancia de Función , Discapacidad Intelectual/genética , Sustitución de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Dominio Catalítico , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Discapacidad Intelectual/metabolismo , Masculino , Ratones
3.
Circ Res ; 110(12): 1564-74, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22550138

RESUMEN

RATIONALE: Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. OBJECTIVE: To identify genetic mutations causing cardiac laterality defects. METHODS AND RESULTS: We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. CONCLUSIONS: NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning.


Asunto(s)
Pleiotropía Genética/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Cardiopatías Congénitas/genética , Proteínas/genética , Secuencia de Aminoácidos , Animales , Estudios de Cohortes , Femenino , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/patología , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Pez Cebra
4.
Eur J Hum Genet ; 31(12): 1447-1454, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821758

RESUMEN

Intellectual disability (ID) and retinal dystrophy (RD) are the frequently found features of multiple syndromes involving additional systemic manifestations. Here, we studied a family with four members presenting severe ID and retinitis pigmentosa (RP). Using genome wide genotyping and exome sequencing, we identified a nonsense variant c.747 C > A (p.Tyr249Ter) in exon 7 of AGPAT3 which co-segregates with the disease phenotype. Western blot analysis of overexpressed WT and mutant AGPAT3 in HEK293T cells showed the absence of AGPAT3, suggesting instability of the truncated protein. Knockdown of Agpat3 in the embryonic mouse brain caused marked deficits in neuronal migration, strongly suggesting that reduced expression of AGPAT3 affects neuronal function. Altogether, our data indicates that AGPAT3 activity is essential for neuronal functioning and loss of its activity probably causes intellectual disability and retinitis pigmentosa (IDRP) syndrome.


Asunto(s)
Discapacidad Intelectual , Retinitis Pigmentosa , Animales , Humanos , Ratones , Exoma , Células HEK293 , Discapacidad Intelectual/genética , Mutación , Linaje , Retinitis Pigmentosa/genética
5.
Sci Rep ; 11(1): 3007, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542309

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.

6.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369389

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder for which only symptomatic treatment with limited benefits is available. AS is caused by mutations affecting the maternally inherited ubiquitin protein ligase E3A (UBE3A) gene. Previous studies showed that the silenced paternal Ube3a gene can be activated by targeting the antisense Ube3a-ATS transcript. We investigated antisense oligonucleotide-induced (ASO-induced) Ube3a-ATS degradation and its ability to induce UBE3A reinstatement and rescue of AS phenotypes in an established Ube3a mouse model. We found that a single intracerebroventricular injection of ASOs at postnatal day 1 (P1) or P21 in AS mice resulted in potent and specific UBE3A reinstatement in the brain, with levels up to 74% of WT levels in the cortex and a full rescue of sensitivity to audiogenic seizures. AS mice treated with ASO at P1 also showed rescue of established AS phenotypes, such as open field and forced swim test behaviors, and significant improvement on the reversed rotarod. Hippocampal plasticity of treated AS mice was comparable to WT but not significantly different from PBS-treated AS mice. No rescue was observed for the marble burying and nest building phenotypes. Our findings highlight the promise of ASO-mediated reactivation of UBE3A as a disease-modifying treatment for AS.


Asunto(s)
Síndrome de Angelman , Oligonucleótidos Antisentido/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Variación Biológica Poblacional , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Silenciador del Gen , Ratones , Reparación del Gen Blanco/métodos , Resultado del Tratamiento
7.
Cell Rep Med ; 2(8): 100360, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467244

RESUMEN

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.


Asunto(s)
Síndrome de Angelman/metabolismo , Síndrome de Angelman/fisiopatología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/metabolismo , Productos del Gen gag/química , Proteínas de Unión al ARN/metabolismo , Retroviridae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Movimiento Celular , Preescolar , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Retroelementos/genética , Gránulos de Estrés/metabolismo , Gránulos de Estrés/ultraestructura , Transcriptoma/genética
8.
Neuroscience ; 445: 172-189, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088294

RESUMEN

The UBE3A gene is part of the chromosome 15q11-q13 region that is frequently deleted or duplicated, leading to several neurodevelopmental disorders (NDD). Angelman syndrome (AS) is caused by the absence of functional maternally derived UBE3A protein, while the paternal UBE3A gene is present but silenced specifically in neurons. Patients with AS present with severe neurodevelopmental delay, with pronounced motor deficits, absence of speech, intellectual disability, epilepsy, and sleep problems. The pathophysiology of AS is still unclear and a treatment is lacking. Animal models of AS recapitulate the genotypic and phenotypic features observed in AS patients, and have been invaluable for understanding the disease process as well as identifying apropriate drug targets. Using these AS mouse models we have learned that loss of UBE3A probably affects many areas of the brain, leading to increased neuronal excitability and a loss of synaptic spines, along with changes in a number of distinct behaviours. Inducible AS mouse models have helped to identify the critical treatment windows for the behavioral and physiological phenotypes. Additionally, AS mouse models indicate an important role for the predominantly nuclear UBE3A isoform in generating the characteristic AS pathology. Last, but not least, the AS mice have been crucial in guiding Ube3a gene reactivation treatments, which present a very promising therapy to treat AS.


Asunto(s)
Síndrome de Angelman , Síndrome de Angelman/genética , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Neuronas , Fenotipo , Ubiquitina-Proteína Ligasas/genética
9.
Mol Autism ; 11(1): 70, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948244

RESUMEN

BACKGROUND: Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by the loss of functional ubiquitin protein ligase E3A (UBE3A). In neurons, UBE3A expression is tightly regulated by a mechanism of imprinting which suppresses the expression of the paternal UBE3A allele. Promising treatment strategies for AS are directed at activating paternal UBE3A gene expression. However, for such strategies to be successful, it is important to know when such a treatment should start, and how much UBE3A expression is needed for normal embryonic brain development. METHODS: Using a conditional mouse model of AS, we further delineated the critical period for UBE3A expression during early brain development. Ube3a gene expression was induced around the second week of gestation and mouse phenotypes were assessed using a behavioral test battery. To investigate the requirements of embryonic UBE3A expression, we made use of mice in which the paternal Ube3a allele was deleted. RESULTS: We observed a full behavioral rescue of the AS mouse model phenotypes when Ube3a gene reactivation was induced around the start of the last week of mouse embryonic development. We found that full silencing of the paternal Ube3a allele was not completed till the first week after birth but that deletion of the paternal Ube3a allele had no significant effect on the assessed phenotypes. LIMITATIONS: Direct translation to human is limited, as we do not precisely know how human and mouse brain development aligns over gestational time. Moreover, many of the assessed phenotypes have limited translational value, as the underlying brain regions involved in these tasks are largely unknown. CONCLUSIONS: Our findings provide further important insights in the requirement of UBE3A expression during brain development. We found that loss of up to 50% of UBE3A protein during prenatal mouse brain development does not significantly impact the assessed mouse behavioral phenotypes. Together with previous findings, our results indicate that the most critical function for mouse UBE3A lies in the early postnatal period between birth and P21.


Asunto(s)
Síndrome de Angelman/genética , Conducta Animal , Regulación del Desarrollo de la Expresión Génica , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Alelos , Animales , Encéfalo/embriología , Encéfalo/patología , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Silenciador del Gen , Integrasas/metabolismo , Ratones Endogámicos C57BL , Nestina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
J Physiol ; 587(Pt 4): 787-804, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19103683

RESUMEN

Fragile X syndrome is one of the most common forms of mental retardation, yet little is known about the physiological mechanisms causing the disease. In this study, we probed the ionotropic glutamate receptor content in synapses of hippocampal CA1 pyramidal neurons in a mouse model for fragile X (Fmr1 KO2). We found that Fmr1 KO2 mice display a significantly lower AMPA to NMDA ratio than wild-type mice at 2 weeks of postnatal development but not at 6-7 weeks of age. This ratio difference at 2 weeks postnatally is caused by down-regulation of the AMPA and up-regulation of the NMDA receptor components. In correlation with these changes, the induction of NMDA receptor-dependent long-term potentiation following a low-frequency pairing protocol is increased in Fmr1 KO2 mice at this developmental stage but not later in maturation. We propose that ionotropic glutamate receptors, as well as potentiation, are altered at a critical time point for hippocampal network development, causing long-term changes. Associated learning and memory deficits would contribute to the fragile X mental retardation phenotype.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica/genética , Plasticidad Neuronal/genética , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/biosíntesis , Hipocampo/metabolismo , Hipocampo/patología , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/genética , Sinapsis/patología
11.
Mol Autism ; 10: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798818

RESUMEN

Background: Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods: Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results: We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions: We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.


Asunto(s)
Hipocampo/patología , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Axones/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Dendritas/metabolismo , Femenino , Adhesiones Focales/metabolismo , Conos de Crecimiento/metabolismo , Masculino , Ratones , Ubiquitina-Proteína Ligasas/metabolismo
12.
Nat Neurosci ; 22(8): 1235-1247, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31235931

RESUMEN

Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/psicología , Conducta Animal , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/genética , Citosol/enzimología , Fenómenos Electrofisiológicos/genética , Femenino , Humanos , Isoenzimas/genética , Masculino , Ratones , Ratones Noqueados , Mutación Missense/genética , Comportamiento de Nidificación , Neuronas/enzimología , Desempeño Psicomotor , Proteínas de Unión al ARN , Natación/psicología , Dedos de Zinc
13.
J Proteomics ; 172: 49-56, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29122726

RESUMEN

Ubiquitylation is an important posttranslational protein modification that is involved in many cellular events. Immunopurification of peptides containing a K-ε-diglycine (diGly) remnant as a mark of ubiquitylation combined with mass spectrometric detection has resulted in an explosion of the number of identified ubiquitylation sites. Here, we present several significant improvements to this workflow, including fast, offline and crude high pH reverse-phase fractionation of tryptic peptides into only three fractions with simultaneous desalting prior to immunopurification and better control of the peptide fragmentation settings in the Orbitrap HCD cell. In addition, more efficient sample cleanup using a filter plug to retain the antibody beads results in a higher specificity for diGly peptides and less non-specific binding. These relatively simple modifications of the protocol result in the routine detection of over 23,000 diGly peptides from HeLa cells upon proteasome inhibition. The efficacy of this strategy is shown for lysates of both non-labeled and SILAC labeled cell lines. Furthermore, we demonstrate that this strategy is useful for the in-depth analysis of the endogenous, unstimulated ubiquitinome of in vivo samples such as mouse brain tissue. This study presents a valuable addition to the toolbox for ubiquitylation site analysis to uncover the deep ubiquitinome. SIGNIFICANCE: A K-ε-diglycine (diGly) mark on peptides after tryptic digestion of proteins indicates a site of ubiquitylation, a posttranslational modification involved in a wide range of cellular processes. Here, we report several improvements to methods for the isolation and detection of diGly peptides from complex biological mixtures such as cell lysates and brain tissue. This adapted method is robust, reproducible and outperforms previously published methods in terms of number of modified peptide identifications from a single sample. In-depth analysis of the ubiquitinome using mass spectrometry will lead to a better understanding of the roles of protein ubiquitylation in cellular events.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Ubiquitinación , Sitios de Unión , Protocolos Clínicos , Glicilglicina/análisis , Células HeLa , Humanos , Métodos , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo
14.
Behav Brain Res ; 162(2): 233-9, 2005 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15876460

RESUMEN

Carriers of premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene are spared the major neurodevelopmental symptomatology of fragile X syndrome patients carrying a full mutation (>200 repeats). In a proportion of premutation carriers, the repeat expansion is associated with a specific neurological profile involving intention tremor, ataxia, intellectual decline compatible with dementia syndrome, Parkinsonism and autonomic dysfunction at older age, commonly referred to as fragile-X-associated tremor/ataxia syndrome (FXTAS). Typical CNS changes include hyperintense signals on T2 weighted magnetic resonance images and the presence of ubiquitin-positive intranuclear neuronal inclusions. A knock-in mouse model with a (CGG)98 repeat in the premutation range has been generated and shown to exhibit elevated Fmr1 mRNA levels and ubiquitin-positive intranuclear neuronal inclusions, suggesting it may be a valid model for the human disease. Given the specific clinical profile of FXTAS patients, the expanded CGG repeat model was assessed for cognitive, behavioural and neuromotor performance at different ages (20, 52 and 72 weeks). The Morris water maze task exposed age-dependent decline of visual-spatial memory. Open field recordings revealed decreased exploration of the centre of the arena in the oldest group of expanded CGG repeat mice, potentially reflecting increased anxiety. Neuromotor tasks primarily showed decline of performance on the accelerating rotarod with age in the premutation carriers but not in control littermates. The age-dependent cognitive decline and neuromotor disturbances may be related to the progressive cognitive and behavioural difficulties observed in FXTAS patients.


Asunto(s)
Conducta Animal/fisiología , Trastornos del Conocimiento/etiología , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/fisiopatología , Trastornos Mentales/etiología , Enfermedad de la Neurona Motora/etiología , Factores de Edad , Análisis de Varianza , Animales , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Femenino , Síndrome del Cromosoma X Frágil/genética , Marcha/genética , Marcha/fisiología , Humanos , Trastornos Mentales/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de la Neurona Motora/genética , Desempeño Psicomotor/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Expansión de Repetición de Trinucleótido/genética
15.
J Clin Invest ; 125(5): 2069-76, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25866966

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design.


Asunto(s)
Síndrome de Angelman/genética , Regulación del Desarrollo de la Expresión Génica , Ubiquitina-Proteína Ligasas/fisiología , Factores de Edad , Síndrome de Angelman/embriología , Síndrome de Angelman/fisiopatología , Síndrome de Angelman/terapia , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Ansiedad/terapia , Cerebelo/embriología , Cerebelo/fisiopatología , Corteza Cerebral/embriología , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Epilepsia/genética , Epilepsia/fisiopatología , Epilepsia/terapia , Femenino , Genes Sintéticos , Impresión Genómica , Hipocampo/embriología , Hipocampo/fisiopatología , Masculino , Ratones , Trastornos del Movimiento/genética , Trastornos del Movimiento/fisiopatología , Trastornos del Movimiento/terapia , Plasticidad Neuronal , Fenotipo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Conducta Estereotipada/fisiología , Tamoxifeno/farmacología , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
16.
Cell Cycle ; 14(18): 2985-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790165

RESUMEN

Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Receptores de GABA-A/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/terapia , Antagonistas de Receptores de GABA-A/farmacología , Genotipo , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Pregnanolona/análogos & derivados , Pregnanolona/farmacología , ARN Mensajero/metabolismo , Receptores de GABA-A/genética
17.
Stem Cell Reports ; 3(5): 892-904, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418731

RESUMEN

The scarcity of primordial germ cells (PGCs) in the developing mammalian embryo hampers robust biochemical analysis of the processes that underlie early germ cell formation. Here, we demonstrate that DAZL, a germ cell-specific RNA binding protein, is a robust PGC marker during in vitro germ cell development. Using Dazl-GFP reporter ESCs, we demonstrate that DAZL plays a central role in a large mRNA/protein interactive network that blocks the translation of core pluripotency factors, including Sox2 and Sall4, as well as of Suz12, a polycomb family member required for differentiation of pluripotent cells. Thus, DAZL limits both pluripotency and somatic differentiation in nascent PGCs. In addition, we observed that DAZL associates with mRNAs of key Caspases and similarly inhibits their translation. This elegant fail-safe mechanism ensures that, whereas loss of DAZL results in prolonged expression of pluripotency factors, teratoma formation is avoided due to the concomitant activation of the apoptotic cascade.


Asunto(s)
Apoptosis/genética , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Células Germinativas/metabolismo , Proteínas de Unión al ARN/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
J Exp Biol ; 212(Pt 16): 2564-70, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19648401

RESUMEN

Lack of the FMR1 gene product causes fragile X syndrome, the commonest inherited cause of mental impairment. We know little of the roles that fragile X related (FXR) gene family members (FMR1, FXR2 and FXR1) play during embryonic development. Although all are expressed in the brain and testis, FXR1 is the principal member found in striated and cardiac muscle. The Fxr1 knockout mice display a striated muscle phenotype but it is not known why they die shortly after birth; however, a cardiac cause is possible. The zebrafish is an ideal model to investigate the role of fxr1 during development of the heart. We have carried out morpholino knockdown of fxr1 and have demonstrated abnormalities of striated muscle development and abnormal development of the zebrafish heart, including failure of looping and snapping of the atrium from its venous pole. In addition, we have measured cardiac function using high-speed video microscopy and demonstrated a significant reduction in cardiac function. This cardiac phenotype has not been previously described and suggests that fxr1 is essential for normal cardiac form and function.


Asunto(s)
Enfermedades de los Peces/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Distrofia Muscular Animal/genética , Pez Cebra/genética , Regiones no Traducidas 5'/genética , Animales , Secuencia de Bases , Causas de Muerte , Desarrollo Embrionario , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/veterinaria , Corazón/fisiopatología , Hibridación in Situ , Ratones , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Miocardio/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
19.
J Biol Chem ; 281(37): 26802-12, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16829531

RESUMEN

NF-kappaB-mediated transcriptional activation is controlled at several levels including interaction with coregulatory proteins. To identify new proteins capable of modulating NF-kappaB-mediated activation, a cytoplasmic two-hybrid screen was performed using the p65 C-terminal transactivation domain as bait and identified the product of the DEK proto-oncogene. DEK is a ubiquitous nuclear protein that has been implicated in several types of cancer and autoimmune diseases. DEK appears to function in several nuclear processes including transcriptional repression and modulation of chromatin structure. Our data indicate that DEK functions as a transcriptional corepressor to repress NF-kappaB activity. DEK expression blocked p65-mediated activation of an NF-kappaB-dependent reporter gene and also inhibited TNFalpha-induced activation of the reporter gene. Chromatin Immunoprecipitation (ChIP) assays showed that DEK associates with the promoters of the NF-kappaB-regulated cIAP2 and IL-8 genes in untreated cells and dissociates from these promoters upon NF-kappaB binding in response to TNFalpha treatment. Moreover, the expression levels of an NF-kappaB-dependent reporter gene as well as the NF-kappaB-regulated Mcp-1 and IkappaBalpha genes is increased in DEK-/- cells compared with wild-type cells. ChIP assays on these promoters show enhanced and prolonged binding of p65 and increased recruitment of the P/CAF coactivator. Overall, these data provide further evidence that DEK functions to negatively regulate transcription.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Proteínas Oncogénicas/metabolismo , Factor de Transcripción ReIA/biosíntesis , Activación Transcripcional , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Células HeLa , Humanos , FN-kappa B/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proto-Oncogenes Mas , Factor de Transcripción ReIA/química , Transgenes , Técnicas del Sistema de Dos Híbridos
20.
Curr Neurol Neurosci Rep ; 5(5): 405-10, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16131424

RESUMEN

The FMR1 gene is involved in two different syndromes: Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome (FXTAS). Fragile X syndrome is a childhood disease and is associated with mental retardation as the main clinical characteristic, whereas FXTAS develops in men and women over 50 years of age. FXTAS represents a new form of inclusion disorder with a high prevalence in the general population. The neurologic phenotype of FXTAS includes intention tremor and ataxia. Associated features are dementia, parkinsonism, neuropathy, and autonomic dysfunction. Elevated FMR1 transcripts have been proposed as the molecular basis of the pathogenic mechanism leading to FXTAS. This review discusses recent developments in the clinical phenotype, prevalence and screening, animal models, and molecular mechanisms of RNA-based pathogenesis in FXTAS.


Asunto(s)
Cromosomas Humanos X , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/genética , Mutación , Ataxia Cerebelosa/etiología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Moleculares , Temblor/etiología , Temblor/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA