Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(7): e108747, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266581

RESUMEN

Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.


Asunto(s)
Gastrulación , Mesodermo , Animales , Embrión de Mamíferos , Membranas Extraembrionarias , Queratinas/genética , Queratinas/metabolismo , Mesodermo/metabolismo , Ratones
2.
Nature ; 582(7811): 253-258, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32523119

RESUMEN

Tissue sculpting during development has been attributed mainly to cellular events through processes such as convergent extension or apical constriction1,2. However, recent work has revealed roles for basement membrane remodelling in global tissue morphogenesis3-5. Upon implantation, the epiblast and extraembryonic ectoderm of the mouse embryo become enveloped by a basement membrane. Signalling between the basement membrane and these tissues is critical for cell polarization and the ensuing morphogenesis6,7. However, the mechanical role of the basement membrane in post-implantation embryogenesis remains unknown. Here we demonstrate the importance of spatiotemporally regulated basement membrane remodelling during early embryonic development. Specifically, we show that Nodal signalling directs the generation and dynamic distribution of perforations in the basement membrane by regulating the expression of matrix metalloproteinases. This basement membrane remodelling facilitates embryo growth before gastrulation. The establishment of the anterior-posterior axis8,9 further regulates basement membrane remodelling by localizing Nodal signalling-and therefore the activity of matrix metalloproteinases and basement membrane perforations-to the posterior side of the embryo. Perforations on the posterior side are essential for primitive-streak extension during gastrulation by rendering the basement membrane of the prospective primitive streak more prone to breaching. Thus spatiotemporally regulated basement membrane remodelling contributes to the coordination of embryo growth, morphogenesis and gastrulation.


Asunto(s)
Membrana Basal/embriología , Membrana Basal/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Animales , Membrana Basal/citología , Blastocisto/citología , Blastocisto/metabolismo , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Gástrula/embriología , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ligandos de Señalización Nodal/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Línea Primitiva/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686257

RESUMEN

We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10-2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = -0.04, p-value = 1.3 × 10-3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10-4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10-2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , COVID-19 , Accidente Cerebrovascular Embólico , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , COVID-19/complicaciones , COVID-19/genética , Accidente Cerebrovascular Isquémico/genética , Arterias
4.
EMBO Rep ; 21(11): e50944, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33016470

RESUMEN

At gastrulation, a subpopulation of epiblast cells constitutes a transient posteriorly located structure called the primitive streak, where cells that undergo epithelial-mesenchymal transition make up the mesoderm and endoderm lineages. Mouse embryo epiblast cells were labelled ubiquitously or in a mosaic fashion. Cell shape, packing, organization and division were recorded through live imaging during primitive streak formation. Posterior epiblast displays a higher frequency of rosettes, some of which associate with a central cell undergoing mitosis. Cells at the primitive streak, in particular delaminating cells, undergo mitosis more frequently than other epiblast cells. In pseudostratified epithelia, mitosis takes place at the apical side of the epithelium. However, mitosis is not restricted to the apical side of the epiblast, particularly on its posterior side. Non-apical mitosis occurs specifically in the streak even when ectopically located. Posterior non-apical mitosis results in one or two daughter cells leaving the epiblast layer. Cell rearrangement associated with mitotic cell rounding in posterior epiblast, in particular when non-apical, might thus facilitate cell ingression and transition to a mesenchymal phenotype.


Asunto(s)
Gastrulación , Estratos Germinativos , Animales , Transición Epitelial-Mesenquimal/genética , Mesodermo , Ratones , Mitosis
5.
J Perinat Med ; 50(4): 476-485, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34973051

RESUMEN

OBJECTIVES: The possibility to isolate fetal cells from pregnant women cervical samples has been discussed for five decades but is not currently applied in clinical practice. This study aimed at offering prenatal genetic diagnosis from fetal cells obtained through noninvasive exocervical sampling and immuno-sorted based on expression of HLA-G. METHODS: We first developed and validated robust protocols for cell detection and isolation on control cell lines expressing (JEG-3) or not (JAR) the HLA-G antigen, a specific marker for extravillous trophoblasts. We then applied these protocols to noninvasive exocervical samples collected from pregnant women between 6 and 14 weeks of gestational age. Sampling was performed through insertion and rotation of a brush at the ectocervix close to the external os of the endocervical canal. Finally, we attempted to detect and quantify trophoblasts in exocervical samples from pregnant women by ddPCR targeting the male SRY locus. RESULTS: For immunohistochemistry, a strong specific signal for HLA-G was observed in the positive control cell line and for rare cells in exocervical samples, but only in non-fixative conditions. HLA-G positive cells diluted in HLA-G negative cells were isolated by flow cytometry or magnetic cell sorting. However, no HLA-G positive cells could be recovered from exocervical samples. SRY gene was detected by ddPCR in exocervical samples from male (50%) but also female (27%) pregnancies. CONCLUSIONS: Our data suggest that trophoblasts are too rarely and inconstantly present in noninvasive exocervical samples to be reliably retrieved by standard immunoisolation techniques and therefore cannot replace the current practice for prenatal screening and diagnosis.


Asunto(s)
Antígenos HLA-G , Pruebas Prenatales no Invasivas , Línea Celular Tumoral , Femenino , Humanos , Masculino , Embarazo , Diagnóstico Prenatal/métodos , Trofoblastos
6.
Hum Mutat ; 42(6): 711-730, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33739556

RESUMEN

Brittle cornea syndrome (BCS) is a rare autosomal recessive disorder characterized by corneal thinning and fragility, leading to corneal rupture, the main hallmark of this disorder. Non-ocular symptoms include not only hearing loss but also signs of connective tissue fragility, placing it in the Ehlers-Danlos syndrome (EDS) spectrum. It is caused by biallelic pathogenic variants in ZNF469 or PRDM5, which presumably encode transcription factors for extracellular matrix components. We report the clinical and molecular features of nine novel BCS families, four of which harbor variants in ZNF469 and five in PRDM5. We also performed a genotype- and phenotype-oriented literature overview of all (n = 85) reported patients with ZNF469 (n = 53) and PRDM5 (n = 32) variants. Musculoskeletal findings may be the main reason for referral and often raise suspicion of another heritable connective tissue disorder, such as kyphoscoliotic EDS, osteogenesis imperfecta, or Marfan syndrome, especially when a corneal rupture has not yet occurred. Our findings highlight the multisystemic nature of BCS and validate its inclusion in the EDS classification. Importantly, gene panels for heritable connective tissue disorders should include ZNF469 and PRDM5 to allow for timely diagnosis and appropriate preventive measures for this rare condition.


Asunto(s)
Proteínas de Unión al ADN/genética , Anomalías del Ojo/genética , Inestabilidad de la Articulación/congénito , Anomalías Cutáneas/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Anomalías del Ojo/epidemiología , Anomalías del Ojo/patología , Familia , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Inestabilidad de la Articulación/epidemiología , Inestabilidad de la Articulación/genética , Inestabilidad de la Articulación/patología , Masculino , Mutación , Linaje , Anomalías Cutáneas/epidemiología , Anomalías Cutáneas/patología , Secuenciación del Exoma , Adulto Joven
7.
Genet Med ; 22(1): 124-131, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316167

RESUMEN

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Asunto(s)
Aracnodactilia/diagnóstico , Contractura/diagnóstico , Fibrilina-2/genética , Análisis de Secuencia de ADN/métodos , Aracnodactilia/genética , Niño , Contractura/genética , Diagnóstico Diferencial , Diagnóstico Precoz , Femenino , Pruebas Genéticas , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad
8.
Development ; 141(11): 2349-59, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24821988

RESUMEN

The ability to follow and modify cell behaviour with accurate spatiotemporal resolution is a prerequisite to study morphogenesis in developing organisms. Electroporation, the delivery of exogenous molecules into targeted cell populations through electric permeation of the plasma membrane, has been used with this aim in different model systems. However, current localised electroporation strategies suffer from insufficient reproducibility and mediocre survival when applied to small and delicate organisms such as early post-implantation mouse embryos. We introduce here a microdevice to achieve localised electroporation with high efficiency and reduced cell damage. In silico simulations using a simple electrical model of mouse embryos indicated that a dielectric guide-based design would improve on existing alternatives. Such a device was microfabricated and its capacities tested by targeting the distal visceral endoderm (DVE), a migrating cell population essential for anterior-posterior axis establishment. Transfection was efficiently and reproducibly restricted to fewer than four visceral endoderm cells without compromising cell behaviour and embryo survival. Combining targeted mosaic expression of fluorescent markers with live imaging in transgenic embryos revealed that, like leading DVE cells, non-leading ones send long basal projections and intercalate during their migration. Finally, we show that the use of our microsystem can be extended to a variety of embryological contexts, from preimplantation stages to organ explants. Hence, we have experimentally validated an approach delivering a tailor-made tool for the study of morphogenesis in the mouse embryo. Furthermore, we have delineated a comprehensive strategy for the development of ad hoc electroporation devices.


Asunto(s)
Electroporación/instrumentación , Animales , Movimiento Celular , Simulación por Computador , Electroporación/métodos , Embrión de Mamíferos/metabolismo , Endodermo/metabolismo , Diseño de Equipo , Femenino , Análisis de Elementos Finitos , Colorantes Fluorescentes/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Miniaturización , Modelos Teóricos
9.
Development ; 138(14): 3011-20, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21693517

RESUMEN

The establishment of the mammalian body plan depends on signal-regulated cell migration and adhesion, processes that are controlled by the Rho family of GTPases. Here we use a conditional allele of Rac1, the only Rac gene expressed early in development, to define its roles in the gastrulating mouse embryo. Embryos that lack Rac1 in the epiblast (Rac1Δepi) initiate development normally: the signaling pathways required for gastrulation are active, definitive endoderm and all classes of mesoderm are specified, and the neural plate is formed. After the initiation of gastrulation, Rac1Δepi embryos have an enlarged primitive streak, make only a small amount of paraxial mesoderm, and the lateral anlage of the heart do not fuse at the midline. Because these phenotypes are also seen in Nap1 mutants, we conclude that Rac1 acts upstream of the Nap1/WAVE complex to promote migration of the nascent mesoderm. In addition to migration phenotypes, Rac1Δepi cells fail to adhere to matrix, which leads to extensive cell death. Cell death is largely rescued in Rac1Δepi mutants that are heterozygous for a null mutation in Pten, providing evidence that Rac1 is required to link signals from the basement membrane to activation of the PI3K-Akt pathway in vivo. Surprisingly, the frequency of apoptosis is greater in the anterior half of the embryo, suggesting that cell survival can be promoted either by matrix adhesion or by signals from the posterior primitive streak. Rac1 also has essential roles in morphogenesis of the posterior notochordal plate (the node) and the midline.


Asunto(s)
Comunicación Celular/fisiología , Movimiento Celular/fisiología , Gástrula/fisiología , Mesodermo/embriología , Morfogénesis/fisiología , Neuropéptidos/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Apoptosis/fisiología , Movimiento Celular/genética , Indoles , Ratones , Transducción de Señal/fisiología , Estadísticas no Paramétricas , Proteína de Unión al GTP rac1
10.
J Med Genet ; 50(9): 585-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23812909

RESUMEN

BACKGROUND: Harstfield syndrome is the rare and unique association of holoprosencephaly (HPE) and ectrodactyly, with or without cleft lip and palate, and variable additional features. All the reported cases occurred sporadically. Although several causal genes of HPE and ectrodactyly have been identified, the genetic cause of Hartsfield syndrome remains unknown. We hypothesised that a single key developmental gene may underlie the co-occurrence of HPE and ectrodactyly. METHODS: We used whole exome sequencing in four isolated cases including one case-parents trio, and direct Sanger sequencing of three additional cases, to investigate the causative variants in Hartsfield syndrome. RESULTS: We identified a novel FGFR1 mutation in six out of seven patients. Affected residues are highly conserved and are located in the extracellular binding domain of the receptor (two homozygous mutations) or the intracellular tyrosine kinase domain (four heterozygous de novo variants). Strikingly, among the six novel mutations, three are located in close proximity to the ATP's phosphates or the coordinating magnesium, with one position required for kinase activity, and three are adjacent to known mutations involved in Kallmann syndrome plus other developmental anomalies. CONCLUSIONS: Dominant or recessive FGFR1 mutations are responsible for Hartsfield syndrome, consistent with the known roles of FGFR1 in vertebrate ontogeny and conditional Fgfr1-deficient mice. Our study shows that, in humans, lack of accurate FGFR1 activation can disrupt both brain and hand/foot midline development, and that FGFR1 loss-of-function mutations are responsible for a wider spectrum of clinical anomalies than previously thought, ranging in severity from seemingly isolated hypogonadotropic hypogonadism, through Kallmann syndrome with or without additional features, to Hartsfield syndrome at its most severe end.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Dedos/anomalías , Deformidades Congénitas de la Mano/genética , Holoprosencefalia/genética , Mutación INDEL/genética , Discapacidad Intelectual/genética , Deformidades Congénitas de las Extremidades/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Secuencia de Bases , Sitios de Unión , Labio Leporino/enzimología , Fisura del Paladar/enzimología , Exoma , Femenino , Genómica , Deformidades Congénitas de la Mano/enzimología , Holoprosencefalia/enzimología , Humanos , Discapacidad Intelectual/enzimología , Deformidades Congénitas de las Extremidades/enzimología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Análisis de Secuencia de ADN
11.
Proc Natl Acad Sci U S A ; 108(17): 7022-7, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21482783

RESUMEN

Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/embriología , Proteínas del Citoesqueleto/metabolismo , Embrión de Mamíferos/embriología , Corazón/embriología , Complejos Multiproteicos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
12.
Front Physiol ; 15: 1395006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818524

RESUMEN

The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.

13.
Dev Biol ; 364(2): 192-201, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22342906

RESUMEN

Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular/fisiología , Desarrollo Embrionario/fisiología , Fosfohidrolasa PTEN/fisiología , Animales , Endodermo/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Fosfohidrolasa PTEN/genética , Embarazo
14.
PLoS Biol ; 8(8): e1000442, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20689803

RESUMEN

Cell migration and cell rearrangements are critical for establishment of the body plan of vertebrate embryos. The first step in organization of the body plan of the mouse embryo, specification of the anterior-posterior body axis, depends on migration of the anterior visceral endoderm from the distal tip of the embryo to a more proximal region overlying the future head. The anterior visceral endoderm (AVE) is a cluster of extra-embryonic cells that secretes inhibitors of the Wnt and Nodal pathways to inhibit posterior development. Because Rac proteins are crucial regulators of cell migration and mouse Rac1 mutants die early in development, we tested whether Rac1 plays a role in AVE migration. Here we show that Rac1 mutant embryos fail to specify an anterior-posterior axis and, instead, express posterior markers in a ring around the embryonic circumference. Cells that express the molecular markers of the AVE are properly specified in Rac1 mutants but remain at the distal tip of the embryo at the time when migration should take place. Using tissue specific deletions, we show that Rac1 acts autonomously within the visceral endoderm to promote cell migration. High-resolution imaging shows that the leading wild-type AVE cells extend long lamellar protrusions that span several cell diameters and are polarized in the direction of cell movement. These projections are tipped by filopodia-like structures that appear to sample the environment. Wild-type AVE cells display hallmarks of collective cell migration: they retain tight and adherens junctions as they migrate and exchange neighbors within the plane of the visceral endoderm epithelium. Analysis of mutant embryos shows that Rac1 is not required for intercellular signaling, survival, proliferation, or adhesion in the visceral endoderm but is necessary for the ability of visceral endoderm cells to extend projections, change shape, and exchange neighbors. The data show that Rac1-mediated epithelial migration of the AVE is a crucial step in the establishment of the mammalian body plan and suggest that Rac1 is essential for collective migration in mammalian tissues.


Asunto(s)
Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Embrión de Mamíferos/fisiología , Endodermo/citología , Neuropéptidos/metabolismo , Vísceras/embriología , Proteínas de Unión al GTP rac/metabolismo , Animales , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/citología , Desarrollo Embrionario , Inducción Embrionaria , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Neuropéptidos/genética , Vísceras/citología , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1
15.
J Immunol ; 187(3): 1475-85, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21709160

RESUMEN

The peptide F2L was previously characterized as a high-affinity natural agonist for the human formyl peptide receptor (FPR) 3. F2L is an acetylated 21-aa peptide corresponding with the N terminus of the intracellular heme-binding protein 1 (HEBP1). In the current work, we have investigated which proteases were able to generate the F2L peptide from its precursor HEBP1. Structure-function analysis of F2L identified three amino acids, G(3), N(7), and S(8), as the most important for interaction of the peptide with FPR3. We expressed a C-terminally His-tagged form of human HEBP1 in yeast and purified it to homogeneity. The purified protein was used as substrate to identify proteases generating bioactive peptides for FPR3-expressing cells. A conditioned medium from human monocyte-derived macrophages was able to generate bioactivity from HEBP1, and this activity was inhibited by pepstatin A. Cathepsin D was characterized as the protease responsible for HEBP1 processing, and the bioactive product was identified as F2L. We have therefore determined how F2L, the specific agonist of FPR3, is generated from the intracellular protein HEBP1, although it is unknown in which compartment the processing by cathepsin D occurs in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Catepsina D/fisiología , Factores Quimiotácticos/agonistas , Hemoproteínas/metabolismo , Péptidos/agonistas , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/inmunología , Receptores de Formil Péptido/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Proteínas Portadoras/biosíntesis , Catepsina D/deficiencia , Células Cultivadas , Factores Quimiotácticos/biosíntesis , Factores Quimiotácticos/metabolismo , Cricetinae , Cricetulus , Proteínas de Unión al Hemo , Hemoproteínas/biosíntesis , Humanos , Ligandos , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neutrófilos/enzimología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Péptidos/metabolismo , Unión Proteica/inmunología , Precursores de Proteínas/biosíntesis , Receptores de Formil Péptido/biosíntesis
16.
Pulm Circ ; 12(2): e12052, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35734542

RESUMEN

Very rare cases of pulmonary arterial hypertension (PAH) have been linked to homozygous or compound heterozygous von Hippel-Lindau (VHL) tumor suppressor gene mutations, while heterozygous VHL mutations lead to VHL tumor syndrome. Although those entities are defined, the genotype-phenotype correlation is incompletely understood, and patient management recommendations are lacking. Here, we describe a case of severe early-onset PAH due to a so-far unreported compound heterozygous association of VHL mutations and review the existing data.

17.
Ophthalmic Genet ; 43(4): 470-475, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35345973

RESUMEN

BACKGROUND: The c.2299delG mutation is prevalent and accounts for 24.5% USH2A pathogenic variants, with promising prospects for customized gene therapy. MATERIALS AND METHODS: We compared the ocular and auditory phenotypes in a retrospective cohort of 169 Usher type 2 patients, with and without the c.2299delG allele, including visual acuity, slit-lamp examination, optical coherence tomography, kinetic perimetry, and audiometric assessment to define the hearing disability. Statistical methods used were covariate balancing propensity score and adjusted survival curves log-rank test for the analysis of visual acuity. RESULTS: We compare 54 Usher patients (31%) carrying at least one c.2299delG allele to 109 patients without this variant. The mean ages at onset of night blindness (14 years) and onset of peripheral vision deficiency (24 years) were similar in both groups, as was the severity of hearing loss (p = 0.731), even in homozygotes (p = 0.136). Based on the covariate balancing propensity score, the c.2299delG carrier patients developed cataract and reached a BCVA of 20/63 earlier than patients without this mutation (mean age 36 versus 42 y.o.; and 52.2 versus 55.1 y.o., respectively). Using adjusted survival curves and a log-rank test based on inverse probability weighting, patients with the c.2299delG variant reach blindness (BCVA <20/400) at 42.3 years old instead of 79.8 years for other USH2A pathogenic variants. CONCLUSIONS: We conclude that c.2299delG is associated with a more severe phenotype of the Usher type 2, in homozygotes and in compound heterozygotes.


Asunto(s)
Proteínas de la Matriz Extracelular , Síndromes de Usher , Proteínas de la Matriz Extracelular/genética , Humanos , Mutación , Estudios Retrospectivos , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
18.
Front Cell Dev Biol ; 10: 1037041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531946

RESUMEN

The mechanical properties of the different germ layers of the early mammalian embryo are likely to be critical for morphogenesis. Cytoskeleton components (actin and myosin, microtubules, intermediate filaments) are major determinants of epithelial plasticity and resilience to stress. Here, we take advantage of a mouse reporter for Keratin 8 to record the pattern of the keratin intermediate filaments network in the first epithelia of the developing mouse embryo. At the blastocyst stage, Keratin 8 is strongly expressed in the trophectoderm, and undetectable in the inner cell mass and its derivatives, the epiblast and primitive endoderm. Visceral endoderm cells that differentiate from the primitive endoderm at the egg cylinder stage display apical Keratin 8 filaments. Upon migration of the Anterior Visceral Endoderm and determination of the anterior-posterior axis, Keratin 8 becomes regionally distributed, with a stronger expression in embryonic, compared to extra-embryonic, visceral endoderm. This pattern emerges concomitantly to a modification of the distribution of Filamentous (F)-actin, from a cortical ring to a dense apical shroud, in extra-embryonic visceral endoderm only. Those regional characteristics are maintained across gastrulation. Interestingly, for each stage and region of the embryo, adjacent germ layers display contrasted levels of keratin filaments, which may play a role in their adaptation to growth and morphological changes.

19.
J Exp Med ; 219(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35670811

RESUMEN

Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-ß. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-ß and compensatory adaptive immunity.


Asunto(s)
COVID-19 , Gripe Humana , Virosis , Virus , Adulto , COVID-19/genética , Humanos , Gripe Humana/genética , SARS-CoV-2
20.
Dev Biol ; 346(2): 237-46, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20678497

RESUMEN

The mouse node is a transient early embryonic structure that is required for left-right asymmetry and for generation of the axial midline, which patterns neural and mesodermal tissues. The node is a shallow teardrop-shaped pit that sits at the distal tip of the early headfold (e7.75) embryo. The shape of the node is believed to be important for generation of the coherent leftward fluid flow required for initiation of left-right asymmetry, but little is known about the morphogenesis of the node. Here we show that the FERM domain protein Lulu/Epb4.1l5 is required for left-right asymmetry in the early mouse embryo. Unlike other genes previously shown to be required for left-right asymmetry in the mouse, lulu is not required for specification of node cell identity, for Nodal signaling in the node or for ciliogenesis. Instead, lulu is required for proper morphogenesis of the node and midline. The precursors of the wild-type node undergo a series of rapid morphological transitions. First, node precursors arise from an epithelial-to-mesenchymal transition at the anterior primitive streak. While in the mesenchymal layer, the node precursors form several ciliated rosette-like clusters; they then rapidly undergo a mesenchymal-to-epithelial transition to insert into the outer, endodermal layer of the embryo. In lulu mutants, node precursor cells are specified and form clusters, but those clusters fail to coalesce to make a single continuous node epithelium. The data suggest that the assembly of the contiguous node epithelium from mesenchymal clusters requires a rapid reorganization of apical-basal polarity that depends on Lulu/Epb4.1l5.


Asunto(s)
Tipificación del Cuerpo/genética , Embrión de Mamíferos/metabolismo , Proteínas de la Membrana/genética , Morfogénesis/genética , Animales , Proteínas del Citoesqueleto , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA