Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37827158

RESUMEN

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Asunto(s)
Anomalías Congénitas , Discapacidades del Desarrollo , N-Metiltransferasa de Histona-Lisina , Humanos , Mutación con Ganancia de Función , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilación , Metiltransferasas/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Discapacidades del Desarrollo/genética , Anomalías Congénitas/genética
2.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413998

RESUMEN

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Asunto(s)
Encefalopatías , Dinaminas , Síndromes Epilépticos , Humanos , Encefalopatías/genética , Causalidad , Dinaminas/genética , Exones/genética , Heterocigoto , Mutación/genética , Síndromes Epilépticos/genética
3.
Brain ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833623

RESUMEN

Congenital hydrocephalus (CH), characterized by cerebral ventriculomegaly, is one of the most common reasons for pediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate CH risk gene, however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated CH (totaling 2,697 parent-proband trios and 8,091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, CH, developmental delay, dysmorphic features, and other structural brain defects including corpus callosum dysgenesis and white matter hypoplasia. Eight unrelated patients were found to harbor arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven additional patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain. These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome featuring ventriculomegaly and CH.

4.
Brain ; 147(1): 311-324, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37713627

RESUMEN

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Asunto(s)
Distonía , Epilepsia , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Microcefalia/genética , Discapacidad Intelectual/genética , Proteínas de Transporte Vesicular/genética , Trastornos del Neurodesarrollo/genética , Epilepsia/genética
5.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37857482

RESUMEN

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Recién Nacido , Femenino , Humanos , Cuerpo Calloso , Agenesia del Cuerpo Calloso/genética , Malformaciones del Sistema Nervioso/genética , Discapacidad Intelectual/genética , Cognición , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
6.
J Med Genet ; 61(2): 103-108, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37879892

RESUMEN

The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Masculino , Humanos , Femenino , Genes Homeobox , Proteínas de Homeodominio/genética , Trastorno del Espectro Autista/genética , Mutación/genética , Factores de Transcripción/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Agenesia del Cuerpo Calloso/genética
7.
J Med Genet ; 61(9): 878-885, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38937076

RESUMEN

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Discapacidad Intelectual , Humanos , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Francia/epidemiología , Niño , ADN (Citosina-5-)-Metiltransferasas/genética , Preescolar , Adolescente , Mutación de Línea Germinal/genética , Adulto , Fenotipo , Adulto Joven , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Lactante
8.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604360

RESUMEN

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Semaforinas , Animales , Orientación del Axón , Embrión de Pollo , Espinas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Semaforinas/genética
9.
Hum Genet ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367212

RESUMEN

Biallelic variants in the ERLIN1 gene were recently reported as the cause of two motor neuron degeneration diseases, SPG62 and a recessive form of amyotrophic lateral sclerosis. However, only 12 individuals from five pedigrees have been identified so far. Thus, the description of the disease remains limited. Following the discovery of a homozygous pathogenic variant in a girl with SPG62, presenting with intellectual disability, and epilepsy, we gathered the largest series of SPG62 cases reported so far (13 individuals) to better understand the phenotype associated with ERLIN1. We collected molecular and clinical data for 13 individuals from six families with ERLIN1 biallelic variants. We performed RNA-seq analyses to characterize intronic variants and used Alphafold and a transcripts database to characterize the molecular consequences of the variants. We identified three new variants suspected to alter the bell-shaped ring formed by the ERLIN1/ERLIN2 complex. Affected individuals had childhood-onset paraparesis with slow progression. Six individuals presented with gait ataxia and three had superficial sensory loss. Aside from our proband, none had intellectual disability or epilepsy. Biallelic pathogenic ERLIN1 variants induce a rare, predominantly pure, spastic paraparesis, with possible cerebellar and peripheral nerve involvement.

10.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117302

RESUMEN

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Adulto , Humanos , Niño , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congénitas de la Mano/genética , Cuello/anomalías , Fenotipo , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética
11.
Am J Hum Genet ; 108(4): 739-748, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711248

RESUMEN

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.


Asunto(s)
Alelos , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Secuencia de Bases , Línea Celular , Preescolar , Consanguinidad , Femenino , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Mutación Missense , Neuritas , Pakistán
12.
Am J Hum Genet ; 108(9): 1692-1709, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34375587

RESUMEN

Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.


Asunto(s)
Encéfalo/metabolismo , Discapacidades del Desarrollo/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación , Receptores de Ácido Kaínico/genética , Adolescente , Adulto , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Epilepsia/diagnóstico por imagen , Epilepsia/metabolismo , Epilepsia/patología , Potenciales Evocados/fisiología , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Heterocigoto , Homocigoto , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Activación del Canal Iónico , Masculino , Modelos Moleculares , Neuronas/metabolismo , Neuronas/patología , Conformación Proteica , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptor de Ácido Kaínico GluK2
13.
Genet Med ; 26(11): 101218, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39036895

RESUMEN

PURPOSE: Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 and has not been implicated in human disease. METHODS: We identify 5 unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and 2 missense variants were identified in probands with neurodevelopmental symptoms, including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. RESULTS: Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles. CONCLUSION: Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.

14.
Genet Med ; 26(3): 101050, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38126281

RESUMEN

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Asunto(s)
Anomalías Múltiples , Trastorno del Espectro Autista , Enfermedades del Desarrollo Óseo , Anomalías Craneofaciales , Sordera , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Trastorno del Espectro Autista/genética , Peptidasa Específica de Ubiquitina 7/genética , Epigenómica , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Biomarcadores
15.
Genet Med ; 26(5): 101087, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288683

RESUMEN

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Factores de Transcripción Sp , Factores de Transcripción , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Epilepsia/genética , Epilepsia/patología , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Sp/genética
16.
Clin Genet ; 106(1): 90-94, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424388

RESUMEN

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central , Síndrome de Hamartoma Múltiple , Fosfohidrolasa PTEN , Humanos , Adulto , Fosfohidrolasa PTEN/genética , Femenino , Masculino , Malformaciones Vasculares del Sistema Nervioso Central/genética , Malformaciones Vasculares del Sistema Nervioso Central/complicaciones , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico , Síndrome de Hamartoma Múltiple/genética , Síndrome de Hamartoma Múltiple/complicaciones , Adulto Joven , Imagen por Resonancia Magnética , Mutación
17.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740550

RESUMEN

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Masculino , Femenino , Niño , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crecimiento , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Síndrome , Índice de Masa Corporal , Estatura/genética
18.
Am J Med Genet A ; 194(7): e63531, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421086

RESUMEN

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 3 , Variaciones en el Número de Copia de ADN , Fenotipo , Humanos , Femenino , Masculino , Cromosomas Humanos Par 3/genética , Duplicación Cromosómica/genética , Niño , Variaciones en el Número de Copia de ADN/genética , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Adolescente , Estudios de Cohortes , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Adulto , Lactante
19.
Epilepsia ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348199

RESUMEN

OBJECTIVE: POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy. Three of these individuals had epileptic seizures. The aim of this article is to precisely define the epilepsy phenotype associated with de novo heterozygous POLR3B variants. METHODS: We used online gene-matching tools to identify 13 patients with de novo POLR3B variants. We systematically collected genotype and phenotype data from clinicians using two standardized proformas. RESULTS: All 13 patients had novel POLR3B variants. Twelve of 13 variants were classified as pathogenic or likely pathogenic as per American College of Medical Genetics (ACMG) criteria. Patients presented with generalized myoclonic, myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic seizures (EMAtS) in seven patients and "probable EMAtS" in two more. Seizures were treatment resistant in all cases. Three patients became seizure-free. All patients had some degree of developmental delay or intellectual disability. In most cases developmental delay was apparent before the onset of seizures. Three of 13 cases were reported to have developmental stagnation or regression in association with seizure onset. Treatments for epilepsy that were reported by clinicians to be effective were: sodium valproate, which was effective in five of nine patients (5/9) who tried it; rufinamide (2/3); and ketogenic diet (2/3). Additional features were ataxia/incoordination (8/13); microcephaly (7/13); peripheral neuropathy (4/13), and spasticity/hypertonia (6/13). SIGNIFICANCE: POLR3B is a novel genetic developmental and epileptic encephalopathy (DEE) in which EMAtS is the predominant epilepsy phenotype. Ataxia, neuropathy, and hypertonia may be variously observed in these patients.

20.
Brain ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038360

RESUMEN

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function (LoF) or gain-of-function (GoF) properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12), and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for LoF and GoF variants. GoF variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age one month), hypertonic, and more often had movement disorders, including hyperekplexia. Patients with LoF variants were older at the time of seizure onset (median age 16 months), hypotonic, and had sleeping disturbances. LoF and GoF variants were disease-causing in both sexes but affected males often carried de novo or hemizygous LoF variants inherited from healthy mothers, whereas all but one affected females had de novo heterozygous GoF variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA