Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Electrophoresis ; 44(24): 1978-1988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37828276

RESUMEN

Messenger RNA (mRNA) has emerged as a modality with immense therapeutic potential. Recent innovations in production process of mRNA call for procedures to isolate pure mRNA drug substance (DS) with high yield, high capacity, scalability, and compatibility with GMP production systems. Novel RNA modalities, such as circular RNA (circRNA), have further driven the need for non-affinity capture possibilities which are already widely used in the biopharmaceutical industry, for example, in monoclonal antibody processing. The principle that multimodal ion exchange/hydrogen bonding chromatography can be used to separate mRNA from in vitro transcription components has recently been demonstrated. Here, we apply and refine this approach to be suitable for scalable purification of multiple mRNA constructs with sufficient yields, purity, and stability, for use in mRNA production process. Binding capacity of the PrimaS-modified monolithic chromatographic column for mRNA enabled up to 7 mg/mL product isolation in a single chromatographic run, with 98% recovery and room temperature stability of the eGFP mRNA demonstrated for up to 28 days. This approach is independent of construct size or the presence of polyadenylic acid tail and is applicable for capture of a wide variety of RNAs, including mRNA, self-amplifying RNA, circRNA, and with optimization also smaller RNAs such as transfer RNA and others.


Asunto(s)
ARN Circular , ARN , ARN Mensajero/genética , Cromatografía por Intercambio Iónico/métodos , Aniones
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762568

RESUMEN

Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM® PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.5. Here, we report that a newly developed chromatographic material enables the elution of mRNA at neutral pH and room temperature. This material demonstrates weak anion-exchanging properties and an isoelectric point of 5.3. It enables the baseline separation of mRNA (at least up to 10,000 nucleotides (nt) in size) from parental plasmid DNA (regardless of isoform composition) with both a NaCl gradient and ascending pH gradient approach, while mRNA elution is achieved in a pH range of 5-7. In addition, the basic structure of the novel material is a chromatographic monolith, enabling convection-assisted mass transfer of large RNA molecules to and from the active surface. This facilitates the elution of mRNA in 3-7 column volumes with more than 80% elution recovery and uncompromised integrity. This is demonstrated by the purification of a model mRNA (size 995 nt) from an in vitro transcription reaction mixture. The purified mRNA is stable for at least 34 days, stored in purified H2O at room temperature.


Asunto(s)
Cromatografía , ARN Mensajero/genética , Temperatura , Plásmidos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA