Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 186(10): 2238-2255.e20, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37146613

RESUMEN

ß-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-ß-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in ß-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that ß-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes ß-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of ß-arrestin function at the plasma membrane, revealing a critical role for ß-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , beta-Arrestinas , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis , Membrana Dobles de Lípidos , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular
2.
Physiol Rev ; 101(3): 857-906, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33331229

RESUMEN

G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales
3.
Chembiochem ; 25(2): e202300459, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37872746

RESUMEN

Measurements of membrane protein thermostability reflect ligand binding. Current thermostability assays often require protein purification or rely on pre-existing radiolabelled or fluorescent ligands, limiting their application to established targets. Alternative methods, such as fluorescence-detection size exclusion chromatography thermal shift, detect protein aggregation but are not amenable to high-throughput screening. Here, we present a ThermoBRET method to quantify the relative thermostability of G protein coupled receptors (GPCRs), using cannabinoid receptors (CB1 and CB2 ) and the ß2 -adrenoceptor (ß2 AR) as model systems. ThermoBRET reports receptor unfolding, does not need labelled ligands and can be used with non-purified proteins. It uses Bioluminescence Resonance Energy Transfer (BRET) between Nanoluciferase (Nluc) and a thiol-reactive fluorescent dye that binds cysteines exposed by unfolding. We demonstrate that the melting point (Tm ) of Nluc-fused GPCRs can be determined in non-purified detergent solubilised membrane preparations or solubilised whole cells, revealing differences in thermostability for different solubilising conditions and in the presence of stabilising ligands. We extended the range of the assay by developing the thermostable tsNLuc by incorporating mutations from the fragments of split-Nluc (Tm of 87 °C versus 59 °C). ThermoBRET allows the determination of GPCR thermostability, which is useful for protein purification optimisation and drug discovery screening.


Asunto(s)
Proteínas Portadoras , Receptores Acoplados a Proteínas G , Ligandos , Unión Proteica , Proteínas de la Membrana/química
4.
Nature ; 536(7617): 484-7, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27525504

RESUMEN

Class A G-protein-coupled receptors (GPCRs) are a large family of membrane proteins that mediate a wide variety of physiological functions, including vision, neurotransmission and immune responses. They are the targets of nearly one-third of all prescribed medicinal drugs such as beta blockers and antipsychotics. GPCR activation is facilitated by extracellular ligands and leads to the recruitment of intracellular G proteins. Structural rearrangements of residue contacts in the transmembrane domain serve as 'activation pathways' that connect the ligand-binding pocket to the G-protein-coupling region within the receptor. In order to investigate the similarities in activation pathways across class A GPCRs, we analysed 27 GPCRs from diverse subgroups for which structures of active, inactive or both states were available. Here we show that, despite the diversity in activation pathways between receptors, the pathways converge near the G-protein-coupling region. This convergence is mediated by a highly conserved structural rearrangement of residue contacts between transmembrane helices 3, 6 and 7 that releases G-protein-contacting residues. The convergence of activation pathways may explain how the activation steps initiated by diverse ligands enable GPCRs to bind a common repertoire of G proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sitios de Unión , Secuencia Conservada , Humanos , Ligandos , Modelos Moleculares , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/genética , Receptores de Vasopresinas/química , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Transducción de Señal , Homología Estructural de Proteína
5.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32902974

RESUMEN

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Colorantes Fluorescentes/química , Microglía/metabolismo , Receptor Cannabinoide CB2/análisis , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Sondas Moleculares/química , Imagen Óptica , Sensibilidad y Especificidad , Transducción de Señal
6.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694350

RESUMEN

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

7.
Bio Protoc ; 10(1): e3484, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654716

RESUMEN

Site-directed scanning mutagenesis is a useful tool applied in studying protein function and designing proteins with new properties, such as increased stability or enzymatic activity. Creating a systematic library of hundreds of site-directed mutants is still a demanding and expensive task. The established protocols for making such libraries include PCR amplification of the recombinant DNA using a pair of primers carrying a target mutation in the same PCR. Unfortunately, this approach is very often coupled with PCR artifacts which compromise overall efficiency of site-directed mutagenesis. To reduce the failure rate due to the PCR artifacts, we have set up a high-throughput mutagenesis protocol based on a two-fragment PCR approach. To this end, each mutation is introduced in two separate PCRs resulting in two linear fragments of the mutated plasmid. In the next steps, the PCR template is digested and the two matching plasmid fragments are joined together using Gibson assembly. Separating the corresponding mutagenic primers into two different PCRs decreases a number of artifacts and thus increases overall cloning efficiency. Furthermore, free software that we developed facilitates both high-throughput primer design and analysis of sequencing results. Overall, this protocol enabled us to efficiently produce several alanine-scanning libraries of 400 single-point mutations with complete coverage of the protein sequence.

8.
Methods Mol Biol ; 2127: 105-127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112318

RESUMEN

G protein-coupled receptors (GPCRs) are versatile membrane proteins involved in the regulation of many physiological processes and pathological conditions, making them interesting pharmacological targets. In order to study their structure and function, GPCRs are traditionally extracted from membranes using detergents. However, due to their hydrophobic nature, intrinsic instability in aqueous solutions, and their denaturing effects, the isolation of properly folded and functional GPCRs is not trivial. Therefore, it is of crucial importance to solubilize receptors under mild conditions and control the sample quality subsequently. Here we describe widely used methods for small-scale GPCR solubilization, followed by quality control based on fluorescence size-exclusion chromatography, SDS-PAGE, temperature-induced protein unfolding (CPM dye binding) and fluorescent ligand binding assay. These methods can easily be used to assess the thermostability and functionality of a GPCR sample exposed to different conditions, such as the use of various detergents, addition of lipids and ligands, making them valuable for obtaining an optimal sample quality for structural and functional studies.


Asunto(s)
Fraccionamiento Químico/métodos , Detergentes/química , Control de Calidad , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Bioensayo/métodos , Bioensayo/normas , Células Cultivadas , Detergentes/farmacología , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Células Eucariotas , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Insectos , Ligandos , Imagen Óptica/métodos , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Solubilidad/efectos de los fármacos , Temperatura
9.
Sci Rep ; 7(1): 6787, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28754896

RESUMEN

Site-directed scanning mutagenesis is a powerful protein engineering technique which allows studies of protein functionality at single amino acid resolution and design of stabilized proteins for structural and biophysical work. However, creating libraries of hundreds of mutants remains a challenging, expensive and time-consuming process. The efficiency of the mutagenesis step is the key for fast and economical generation of such libraries. PCR artefacts such as misannealing and tandem primer repeats are often observed in mutagenesis cloning and reduce the efficiency of mutagenesis. Here we present a high-throughput mutagenesis pipeline based on established methods that significantly reduces PCR artefacts. We combined a two-fragment PCR approach, in which mutagenesis primers are used in two separate PCR reactions, with an in vitro assembly of resulting fragments. We show that this approach, despite being more laborious, is a very efficient pipeline for the creation of large libraries of mutants.


Asunto(s)
Mutagénesis Sitio-Dirigida/métodos , Reacción en Cadena de la Polimerasa/métodos , Humanos , Mutagénesis Sitio-Dirigida/normas , Reacción en Cadena de la Polimerasa/normas , Receptor Cannabinoide CB2/genética , Receptores de Vasopresinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA