Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2301312120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279269

RESUMEN

Glycan alterations are associated with aging, neuropsychiatric, and neurodegenerative diseases, although the contributions of specific glycan structures to emotion and cognitive functions remain largely unknown. Here, we used a combination of chemistry and neurobiology to show that 4-O-sulfated chondroitin sulfate (CS) polysaccharides are critical regulators of perineuronal nets (PNNs) and synapse development in the mouse hippocampus, thereby affecting anxiety and cognitive abilities such as social memory. Brain-specific deletion of CS 4-O-sulfation in mice increased PNN densities in the area CA2 (cornu ammonis 2), leading to imbalanced excitatory-to-inhibitory synaptic ratios, reduced CREB activation, elevated anxiety, and social memory dysfunction. The impairments in PNN densities, CREB activity, and social memory were recapitulated by selective ablation of CS 4-O-sulfation in the CA2 region during adulthood. Notably, enzymatic pruning of the excess PNNs reduced anxiety levels and restored social memory, while chemical manipulation of CS 4-O-sulfation levels reversibly modulated PNN densities surrounding hippocampal neurons and the balance of excitatory and inhibitory synapses. These findings reveal key roles for CS 4-O-sulfation in adult brain plasticity, social memory, and anxiety regulation, and they suggest that targeting CS 4-O-sulfation may represent a strategy to address neuropsychiatric and neurodegenerative diseases associated with social cognitive dysfunction.


Asunto(s)
Matriz Extracelular , Enfermedades Neurodegenerativas , Ratones , Animales , Matriz Extracelular/química , Neuronas/fisiología , Hipocampo , Sulfatos de Condroitina/química
2.
Nat Chem Biol ; 17(2): 178-186, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33020664

RESUMEN

The angiopoietin (Ang)-Tie pathway is essential for the proper maturation and remodeling of the vasculature. Despite its importance in disease, the mechanisms that control signal transduction through this pathway are poorly understood. Here, we demonstrate that heparan sulfate glycosaminoglycans (HS GAGs) regulate Ang-Tie signaling through direct interactions with both Ang ligands and Tie1 receptors. HS GAGs formed ternary complexes with Ang1 or Ang4 and Tie2 receptors, resulting in potentiation of endothelial survival signaling. In addition, HS GAGs served as ligands for the orphan receptor Tie1. The HS-Tie1 interaction promoted Tie1-Tie2 heterodimerization and enhanced Tie1 stability within the mature vasculature. Loss of HS-Tie1 binding using CRISPR-Cas9-mediated mutagenesis in vivo led to decreased Tie protein levels, pathway suppression and aberrant retinal vascularization. Together, these results reveal that sulfated glycans use dual mechanisms to regulate Ang-Tie signaling and are important for the development and maintenance of the vasculature.


Asunto(s)
Angiopoyetina 1/genética , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/crecimiento & desarrollo , Polisacáridos/farmacología , Receptores TIE/genética , Transducción de Señal/efectos de los fármacos , Sulfatos/farmacología , Animales , Sistemas CRISPR-Cas , Línea Celular , Femenino , Glicosaminoglicanos/farmacología , Heparitina Sulfato/farmacología , Ligandos , Masculino , Ratones , Ratones Transgénicos , Ribonucleasa Pancreática/genética , Transducción de Señal/genética
3.
Cell Mol Neurobiol ; 40(2): 191-201, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31836967

RESUMEN

Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease.


Asunto(s)
Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Trastornos Mentales/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Tracto Gastrointestinal/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/psicología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Trastornos Mentales/psicología
4.
Proc Natl Acad Sci U S A ; 114(52): 13697-13702, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229841

RESUMEN

Cell-surface carbohydrates play important roles in numerous biological processes through their interactions with various protein-binding partners. These interactions are made possible by the vast structural diversity of carbohydrates and the diverse array of carbohydrate presentations on the cell surface. Among the most complex and important carbohydrates are glycosaminoglycans (GAGs), which display varied stereochemistry, chain lengths, and patterns of sulfation. GAG-protein interactions participate in neuronal development, angiogenesis, spinal cord injury, viral invasion, and immune response. Unfortunately, little structural information is available for these complexes; indeed, for the highly sulfated chondroitin sulfate motifs, CS-E and CS-D, there are no structural data. We describe here the development and validation of the GAG-Dock computational method to predict accurately the binding poses of protein-bound GAGs. We validate that GAG-Dock reproduces accurately (<1-Å rmsd) the crystal structure poses for four known heparin-protein structures. Further, we predict the pose of heparin and chondroitin sulfate derivatives bound to the axon guidance proteins, protein tyrosine phosphatase σ (RPTPσ), and Nogo receptors 1-3 (NgR1-3). Such predictions should be useful in understanding and interpreting the role of GAGs in neural development and axonal regeneration after CNS injury.


Asunto(s)
Sulfatos de Condroitina/química , Heparina/química , Simulación del Acoplamiento Molecular , Proteínas/química , Sitios de Unión , Sulfatos de Condroitina/metabolismo , Cristalografía por Rayos X , Heparina/metabolismo , Proteínas/metabolismo
5.
J Biol Chem ; 293(27): 10826-10840, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29752409

RESUMEN

Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and ß-amyloid (Aß) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas the binding of α-synuclein and Aß aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2), and exostosin-like 3 (EXTL3), as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of EXT1, EXT2, EXTL3, or NDST1, but not HS6ST2 reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aß aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.


Asunto(s)
Péptidos beta-Amiloides/química , Glicosaminoglicanos/química , Proteoglicanos de Heparán Sulfato/metabolismo , Azufre/metabolismo , Tauopatías/patología , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Sistemas CRISPR-Cas , Glicosaminoglicanos/metabolismo , Humanos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Sulfotransferasas/antagonistas & inhibidores , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Tauopatías/metabolismo
6.
Immunopharmacol Immunotoxicol ; 41(6): 577-585, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570011

RESUMEN

Context: Tissue resident macrophages and peripherally infiltrating macrophages play a prominent role in maintaining homeostasis in the gastrointestinal tract (GIT), though aberrant activation is implicated in inflammatory conditions, including ulcerative colitis (UC). Recent metabolomic studies indicate that tyramine (TYR) is elevated in the stool of patients with UC. TYR activates the mammalian trace amine associated receptor 1 (TAAR1). Our previous work identified TAAR1 expression in mixed populations of immune cells, whereas a limited number of other studies have identified TAAR1-dependent effects in cytokine secretion and gene expression in T-cells and B-cells.Objective: To investigate whether TAAR1 may serve as a novel target for an anti-inflammatory therapeutic in UC, we explored TAAR1 expression in mouse bone marrow-derived macrophages (BMDMs), and its upregulation and activation in response to LPS and TYR.Results: Here, we demonstrate for the first time that TAAR1 is expressed in BMDM and undergoes agonist-induced upregulation. Additionally, TYR elicits significant increases in inflammatory cytokine gene expression in non-polarized and LPS-polarized BMDM, and the TAAR1 antagonist EPPTB inhibits the TYR-mediated upregulation of TAAR1 and inflammatory cytokine gene expression in BMDM. Conclusions: Our data suggest that TAAR1 is a mediator of macrophage inflammation and a potential therapeutic target to attenuate UC symptomology.


Asunto(s)
Colitis Ulcerosa/metabolismo , Citocinas/biosíntesis , Regulación de la Expresión Génica , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Médula Ósea , Colitis Ulcerosa/patología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Macrófagos/patología , Ratones
7.
Mol Biol Evol ; 34(7): 1629-1643, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333316

RESUMEN

The mu opioid receptor is involved in many natural processes including stress response, pleasure, and pain. Mutations in the gene also have been associated with opiate and alcohol addictions as well as with responsivity to medication targeting these disorders. Two common and mutually exclusive polymorphisms have been identified in humans, A118G (N40D), found commonly in non-African populations, and C17T (V6A), found almost exclusively in African populations. Although A118G has been studied extensively for associations and in functional assays, C17T is much less well understood. In addition to a parallel polymorphism previously identified in rhesus macaques (Macaca mulatta), C77G (P26R), resequencing in additional non-human primate species identifies further common variation: C140T (P47L) in cynomolgus macaques (Macaca fascicularis), G55C (D19H) in vervet monkeys (Chlorocebus aethiops sabeus), A111T (L37F) in marmosets (Callithrix jacchus), and C55T (P19S) in squirrel monkeys (Saimiri boliviensis peruviensis). Functional effects on downstream signaling are observed for each of these variants following treatment with the endogenous agonist ß-endorphin and the exogenous agonists morphine, DAMGO ([d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), and fentanyl. In addition to demonstrating the importance of functional equivalency in reference to population variation for minority health, this also shows how common evolutionary pressures have produced similar phenotypes across species, suggesting a shared response to environmental needs and perhaps elucidating the mechanism by which these organism-environment interactions are mediated physiologically and molecularly. These studies set the stage for future investigations of shared functional polymorphisms across species as a new genetic tool for translational research.


Asunto(s)
Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Animales , Evolución Biológica , Evolución Molecular , Humanos , Macaca mulatta/genética , Polimorfismo Genético/genética , Primates/genética , Selección Genética/genética
8.
J Cell Mol Med ; 21(11): 2974-2984, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28524599

RESUMEN

Huntington's disease (HD) is caused by a genetically mutated huntingtin (mHtt) protein with expanded polyQ stretch, which impairs cytosolic sequestration of the repressor element-1 silencing transcription factor (REST), resulting in excessive nuclear REST and subsequent repression of neuronal genes. We recently demonstrated that REST undergoes extensive, context-dependent alternative splicing, of which exon-3 skipping (∆E3 )-a common event in human and nonhuman primates-causes loss of a motif critical for REST nuclear targeting. This study aimed to determine whether ∆E3 can be targeted to reduce nuclear REST and rescue neuronal gene expression in mouse striatal-derived, mHtt-expressing STHdhQ111/Q111 cells-a well-established cellular model of HD. We designed two morpholino antisense oligos (ASOs) targeting the splice sites of Rest E3 and examined their effects on ∆E3 , nuclear Rest accumulation and Rest-controlled gene expression in STHdhQ111/Q111 cells. We found that (1) the ASOs treatment significantly induced ∆E3 , reduced nuclear Rest, and rescued transcription and/or mis-splicing of specific neuronal genes (e.g. Syn1 and Stmn2) in STHdhQ111/Q111 cells; and (2) the ASOs-induced transcriptional regulation was dependent on ∆E3 induction and mimicked by siRNA-mediated knock-down of Rest expression. Our findings demonstrate modulation of nuclear REST by ∆E3 and its potential as a new therapeutic target for HD and provide new insights into environmental regulation of genome function and pathogenesis of HD. As ∆E3 is modulated by cellular signalling and linked to various types of cancer, we anticipate that ∆E3 contributes to environmentally tuned REST function and may have a broad range of clinical implications.


Asunto(s)
Empalme Alternativo , Núcleo Celular/metabolismo , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Proteínas Represoras/genética , Animales , Proteínas de Unión al Calcio , Línea Celular , Cuerpo Estriado/patología , Exones , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Biológicos , Terapia Molecular Dirigida , Morfolinos/genética , Morfolinos/metabolismo , Neuronas/patología , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Estatmina
9.
PLoS Pathog ; 10(12): e1004495, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474621

RESUMEN

The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4' and 6' of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Sulfatos de Condroitina/química , Epítopos/química , Virus Vaccinia/química , Proteínas del Envoltorio Viral/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sulfatos de Condroitina/inmunología , Epítopos/inmunología , Ratones , Virus Vaccinia/inmunología , Proteínas del Envoltorio Viral/inmunología
10.
J Biol Chem ; 288(38): 27384-27395, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23940048

RESUMEN

Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186-200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.


Asunto(s)
Axones/metabolismo , Encéfalo/metabolismo , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Semaforina-3A/metabolismo , Secuencias de Aminoácidos , Animales , Química Encefálica/fisiología , Sulfatos de Condroitina/química , Sulfatos de Condroitina/genética , Matriz Extracelular/química , Matriz Extracelular/genética , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica , Ratas , Semaforina-3A/química , Semaforina-3A/genética
11.
Cancers (Basel) ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398103

RESUMEN

Prostate cancer represents a significant health risk to aging men, in which diagnostic challenges to the identification of aggressive cancers remain unmet. Prostate cancer screening is driven by the prostate-specific antigen (PSA); however, in men with benign prostatic hyperplasia (BPH) due to an enlarged prostate and elevated PSA, PSA's screening utility is diminished, resulting in many unnecessary biopsies. To address this issue, we previously identified a cleaved fragment of Filamin A (FLNA) protein (as measured with IP-MRM mass spectrometry assessment as a prognostic biomarker for stratifying BPH from prostate cancer and subsequently evaluated its expanded utility in Caucasian (CA) and African American (AA) men. All men had a negative digital rectal examination (DRE) and PSA between 4 and 10 ng/mL and underwent prostate biopsy. In AA men, FLNA serum levels exhibited diagnostic utility for stratifying BPH from patients with aggressive prostate cancer (0.71 AUC and 12.2 OR in 48 men with BPH and 60 men with PCa) and outperformed PSA (0.50 AUC, 2.2 OR). In CA men, FLNA serum levels also exhibited diagnostic utility for stratifying BPH from patients with aggressive prostate cancer (0.74 AUC and 19.4 OR in 191 men with BPH and 109 men with PCa) and outperformed PSA (0.46 AUC, 0.32 OR). Herein, we established FLNA alone as a serum biomarker for stratifying men with BPH vs. those with high Gleason (7-10) prostate cancers compared to the current diagnostic paradigm of using PSA. This approach demonstrates clinical actionability of FLNA alone without the requirement of prostate volume measurement as a test with utility in AA and CA men and represents a significant opportunity to decrease the number of unnecessary biopsies in aggressive prostate cancer diagnoses.

12.
medRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798344

RESUMEN

The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.

13.
BMC Genomics ; 14: 703, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24119066

RESUMEN

BACKGROUND: G-protein coupled receptors (GPCRs) play an inordinately large role in human health. Variation in the genes that encode these receptors is associated with numerous disorders across the entire spectrum of disease. GPCRs also represent the single largest class of drug targets and associated pharmacogenetic effects are modulated, in part, by polymorphisms. Recently, non-human primate models have been developed focusing on naturally-occurring, functionally-parallel polymorphisms in candidate genes. This work aims to extend those studies broadly across the roughly 377 non-olfactory GPCRs. Initial efforts include resequencing 44 Indian-origin rhesus macaques (Macaca mulatta), 20 Chinese-origin rhesus macaques, and 32 cynomolgus macaques (M. fascicularis). RESULTS: Using the Agilent target enrichment system, capture baits were designed for GPCRs off the human and rhesus exonic sequence. Using next generation sequencing technologies, nearly 25,000 SNPs were identified in coding sequences including over 14,000 non-synonymous and more than 9,500 synonymous protein-coding SNPs. As expected, regions showing the least evolutionary constraint show greater rates of polymorphism and greater numbers of higher frequency polymorphisms. While the vast majority of these SNPs are singletons, roughly 1,750 non-synonymous and 2,900 synonymous SNPs were found in multiple individuals. CONCLUSIONS: In all three populations, polymorphism and divergence is highly concentrated in N-terminal and C-terminal domains and the third intracellular loop region of GPCRs, regions critical to ligand-binding and signaling. SNP frequencies in macaques follow a similar pattern of divergence from humans and new polymorphisms in primates have been identified that may parallel those seen in humans, helping to establish better non-human primate models of disease.


Asunto(s)
Macaca fascicularis/genética , Macaca mulatta/genética , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Animales , Genética de Población , Humanos , Anotación de Secuencia Molecular , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/química
14.
Am J Med Genet B Neuropsychiatr Genet ; 159B(2): 152-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22241550

RESUMEN

Serotonin (5-HT) modulates the stress response by interacting with the hormonal hypothalamic-pituitary-adrenal (HPA) axis and neuronal sympathetic nervous system (SNS). Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT biosynthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. While TPH2 genetic variance has been linked to numerous behavioral traits and disorders, findings on TPH2 gene expression have not only reinforced, but also provided new insights into, the long-recognized but not yet fully understood 5-HT-stress interaction. In this review, we summarize advances in TPH2 expression regulation and its relevance to the stress response and clinical implications. Particularly, based on findings on rhesus monkey TPH2 genetics and other relevant literature, we propose that: (i) upon activation of adrenal cortisol secretion, the cortisol surge induces TPH2 expression and de novo 5-HT synthesis; (ii) the induced 5-HT in turn inhibits cortisol secretion by modulating the adrenal sensitivity to ACTH via the suprachiasmatic nuclei (SCN)-SNS-adrenal system, such that it contributes to the feedback inhibition of cortisol production; (iii) basal TPH2 expression or 5-HT synthesis, as well as early-life experience, influence basal cortisol primarily via the hormonal HPA axis; and (iv) 5'- and 3'-regulatory polymorphisms of TPH2 may differentially influence the stress response, presumably due to their differential roles in gene expression regulation. Our increasing knowledge of TPH2 expression regulation not only helps us better understand the 5-HT-stress interaction and the pathophysiology of neuropsychiatric disorders, but also provides new strategies for the treatment of stress-associated diseases.


Asunto(s)
Regulación de la Expresión Génica , Trastornos Mentales/genética , Trastornos Mentales/patología , Serotonina/metabolismo , Triptófano Hidroxilasa/genética , Humanos , Fenotipo , Sistema Hipófiso-Suprarrenal , Triptófano Hidroxilasa/metabolismo
15.
ACS Chem Biol ; 17(5): 1022-1029, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35467836

RESUMEN

Genetic code expansion has proven invaluable to the elucidation of functions of defined protein modifications through the site-specific incorporation of noncanonical amino acids. The use of nonhydrolyzable derivatives of post-translational modifications can greatly increase site stoichiometry and half-life. Investigating acetyllysine reader domain (bromodomain) interactions with acetylated nonhistone proteins is challenging due to the limited tools available and dynamic nature of this post-translational modification. Here, we demonstrate that bromodomains bind acetyllysine peptides and those substituted with an acetyllysine derivative, trifluoroacetyllysine, with similar affinity and selectivity. Importantly, both trifluoroacetyllysine and acetyllysine can be site-specifically incorporated into proteins expressed in bacterial and mammalian cells, and the strong electron-withdrawing trifluoro substituent makes the latter resistant to deacetylation by sirtuins (SIRTs). The controlled expression of SIRT-resistant, site-specifically acetylated transcription factors expands the set of available tools for determining the function of acetylation, and it serves as a template for investigating bromodomain interactions with acetylated transcription factors.


Asunto(s)
Lisina , Sirtuinas , Acetilación , Animales , Lisina/química , Mamíferos/metabolismo , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo
16.
Drugs Real World Outcomes ; 9(3): 359-375, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35809196

RESUMEN

BACKGROUND: The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions. OBJECTIVES: The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables. METHODS: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within the Interrogative Biology® platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. RESULTS: We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients. CONCLUSIONS: The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources.

17.
Sci Rep ; 12(1): 1186, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075163

RESUMEN

Cancer biomarker discovery is critically dependent on the integrity of biofluid and tissue samples acquired from study participants. Multi-omic profiling of candidate protein, lipid, and metabolite biomarkers is confounded by timing and fasting status of sample collection, participant demographics and treatment exposures of the study population. Contamination by hemoglobin, whether caused by hemolysis during sample preparation or underlying red cell fragility, contributes 0-10 g/L of extraneous protein to plasma, serum, and Buffy coat samples and may interfere with biomarker detection and validation. We analyzed 617 plasma, 701 serum, and 657 buffy coat samples from a 7-year longitudinal multi-omic biomarker discovery program evaluating 400+ participants with or at risk for pancreatic cancer, known as Project Survival. Hemolysis was undetectable in 93.1% of plasma and 95.0% of serum samples, whereas only 37.1% of buffy coat samples were free of contamination by hemoglobin. Regression analysis of multi-omic data demonstrated a statistically significant correlation between hemoglobin concentration and the resulting pattern of analyte detection and concentration. Although hemolysis had the greatest impact on identification and quantitation of the proteome, distinct differentials in metabolomics and lipidomics were also observed and correlated with severity. We conclude that quality control is vital to accurate detection of informative molecular differentials using OMIC technologies and that caution must be exercised to minimize the impact of hemolysis as a factor driving false discovery in large cancer biomarker studies.


Asunto(s)
Biomarcadores/sangre , Hemólisis , Lipidómica/normas , Neoplasias Pancreáticas/sangre , Pancreatitis/sangre , Proteómica/normas , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Espectrometría de Masas , Medicina de Precisión
18.
J Am Chem Soc ; 133(31): 11964-6, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21736357

RESUMEN

The design of a supramolecular catalyst capable of high-turnover catalysis is reported. A ruthenium(II) catalyst is incorporated into a water-soluble supramolecular assembly, imparting the ability to catalyze allyl alcohol isomerization. The catalyst is protected from decomposition by sequestration inside the host but retains its catalytic activity with scope governed by confinement within the host. This host-guest complex is a uniquely active supramolecular catalyst, capable of >1000 turnovers.

19.
J Neurochem ; 116(2): 164-76, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21073468

RESUMEN

It is now recognized that trace amine associated-receptor 1 (TAAR1) plays a functional role in the regulation of brain monoamines and the mediation of action of amphetamine-like psychostimulants. Accordingly, research on TAAR1 opens the door to a new avenue of approach for medications development to treat drug addiction as well as the spectrum of neuropsychiatric disorders hallmarked by aberrant regulation of brain monoamines. This overview focuses on recent studies which reveal a role for TAAR1 in the functional regulation of monoamine transporters and the neuronal regulatory mechanisms that modulate dopaminergic activity.


Asunto(s)
Dopamina/fisiología , Receptores Acoplados a Proteínas G/fisiología , Proteínas de Transporte Vesicular de Monoaminas/fisiología , Animales , Humanos , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
20.
J Neurovirol ; 17(5): 455-68, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21789725

RESUMEN

Understanding the mechanisms of neuronal regeneration and repair in the adult central nervous system is a vital area of research. Using a rhesus lentiviral encephalitis model, we sought to determine whether recovery of neuronal metabolism after injury coincides with the induction of two important markers of synaptodendritic repair: growth-associated protein-43 (GAP-43) and ephrin B3. We examined whether the improvement of neuronal metabolism with combined anti-retroviral therapy (cART) after simian immunodeficiency virus (SIV) infection in rhesus macaques involved induction of GAP-43, also known as neuromodulin, and ephrin B3, both implicated in axonal pathfinding during neurodevelopment and regulation of synapse formation, neuronal plasticity, and repair in adult brain. We utilized magnetic resonance spectroscopy to demonstrate improved neuronal metabolism in vivo in adult SIV-infected cART animals compared to untreated and uninfected controls. We then assessed levels of GAP-43, ephrin B3, and synaptophysin, a pre-synaptic marker, in three brain regions important for cognitive function, cortex, hippocampus, and putamen, by quantitative real-time RT-PCR and immunohistochemistry. Here we demonstrate that (1) GAP-43 mRNA and protein are induced with SIV infection, (2) GAP-43 protein is higher in the hippocampus outer molecular layer in SIV-infected animals that received cART compared to those that did not, and (3) activated microglia and infiltrating SIV-infected macrophages express abundant ephrin B3, an important axonal guidance molecule. We propose a model whereby SIV infection triggers events that lead to induction of GAP-43 and ephrin B3, and that short-term cART results in increased magnitude of repair mechanisms especially in the hippocampus, a region known for high levels of adult plasticity.


Asunto(s)
Encéfalo/metabolismo , Efrina-B3/metabolismo , Proteína GAP-43/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Animales , Antirretrovirales/uso terapéutico , Encéfalo/patología , Encéfalo/virología , Hipocampo/metabolismo , Macaca mulatta/metabolismo , Macaca mulatta/virología , Macrófagos/metabolismo , Microglía/metabolismo , Plasticidad Neuronal , ARN Mensajero/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Sinaptofisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA