Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(3): 816-829, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109776

RESUMEN

The amygdala was highlighted as an early site for neurofibrillary tau tangle pathology in Alzheimer's disease in the seminal 1991 article by Braak and Braak. This knowledge has, however, only received traction recently with advances in imaging and image analysis techniques. Here, we provide a cross-disciplinary overview of pathology and neuroimaging studies on the amygdala. These studies provide strong support for an early role of the amygdala in Alzheimer's disease and the utility of imaging biomarkers of the amygdala in detecting early changes and predicting decline in cognitive functions and neuropsychiatric symptoms in early stages. We summarize the animal literature on connectivity of the amygdala, demonstrating that amygdala nuclei that show the earliest and strongest accumulation of neurofibrillary tangle pathology are those that are connected to brain regions that also show early neurofibrillary tangle accumulation. Additionally, we propose an alternative pathway of neurofibrillary tangle spreading within the medial temporal lobe between the amygdala and the anterior hippocampus. The proposed existence of this pathway is strengthened by novel experimental data on human functional connectivity. Finally, we summarize the functional roles of the amygdala, highlighting the correspondence between neurofibrillary tangle accumulation and symptomatic profiles in Alzheimer's disease. In summary, these findings provide a new impetus for studying the amygdala in Alzheimer's disease and a unique perspective to guide further study on neurofibrillary tangle spreading and the occurrence of neuropsychiatric symptoms in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Ovillos Neurofibrilares , Amígdala del Cerebelo/diagnóstico por imagen , Lóbulo Temporal , Cognición
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35165149

RESUMEN

The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene-neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene-neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.


Asunto(s)
Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/metabolismo , Simulación por Computador , Ratones , Modelos Biológicos
3.
Semin Cell Dev Biol ; 129: 22-30, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34462249

RESUMEN

Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Neuroimagen/efectos adversos , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiología , Trastornos del Olfato/patología , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/patología , Pandemias , SARS-CoV-2 , Olfato
4.
Biometrics ; 79(3): 2333-2345, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36263865

RESUMEN

Brain segmentation at different levels is generally represented as hierarchical trees. Brain regional atrophy at specific levels was found to be marginally associated with Alzheimer's disease outcomes. In this study, we propose an ℓ1 -type regularization for predictors that follow a hierarchical tree structure. Considering a tree as a directed acyclic graph, we interpret the model parameters from a path analysis perspective. Under this concept, the proposed penalty regulates the total effect of each predictor on the outcome. With regularity conditions, it is shown that under the proposed regularization, the estimator of the model coefficient is consistent in ℓ2 -norm and the model selection is also consistent. When applied to a brain sMRI dataset acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the proposed approach identifies brain regions where atrophy in these regions demonstrates the declination in memory. With regularization on the total effects, the findings suggest that the impact of atrophy on memory deficits is localized from small brain regions, but at various levels of brain segmentation. Data used in preparation of this paper were obtained from the ADNI database.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen/métodos , Análisis de Regresión , Atrofia/patología
5.
Cereb Cortex ; 31(12): 5637-5651, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34184058

RESUMEN

This study examines the relationship of engagement in different lifestyle activities to connectivity in large-scale functional brain networks, and whether network connectivity modifies cognitive decline, independent of brain amyloid levels. Participants (N = 153, mean age = 69 years, including N = 126 with amyloid imaging) were cognitively normal when they completed resting-state functional magnetic resonance imaging, a lifestyle activity questionnaire, and cognitive testing. They were followed with annual cognitive tests up to 5 years (mean = 3.3 years). Linear regressions showed positive relationships between cognitive activity engagement and connectivity within the dorsal attention network, and between physical activity levels and connectivity within the default-mode, limbic, and frontoparietal control networks, and global within-network connectivity. Additionally, higher cognitive and physical activity levels were independently associated with higher network modularity, a measure of functional network specialization. These associations were largely independent of APOE4 genotype, amyloid burden, global brain atrophy, vascular risk, and level of cognitive reserve. Moreover, higher connectivity in the dorsal attention, default-mode, and limbic networks, and greater global connectivity and modularity were associated with reduced cognitive decline, independent of APOE4 genotype and amyloid burden. These findings suggest that changes in functional brain connectivity may be one mechanism by which lifestyle activity engagement reduces cognitive decline.


Asunto(s)
Disfunción Cognitiva , Anciano , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Estilo de Vida , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas
6.
Proc Natl Acad Sci U S A ; 115(16): 4252-4257, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29592955

RESUMEN

Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 µm3) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Atlas como Asunto , Hipocampo/patología , Imagen por Resonancia Magnética , Neuroimagen , Anciano , Atrofia , Giro Dentado/patología , Humanos , Imagenología Tridimensional , Tamaño de los Órganos
7.
Alzheimers Dement ; 17(1): 89-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920988

RESUMEN

INTRODUCTION: Relationships between brain atrophy patterns of typical aging and Alzheimer's disease (AD), white matter disease, cognition, and AD neuropathology were investigated via machine learning in a large harmonized magnetic resonance imaging database (11 studies; 10,216 subjects). METHODS: Three brain signatures were calculated: Brain-age, AD-like neurodegeneration, and white matter hyperintensities (WMHs). Brain Charts measured and displayed the relationships of these signatures to cognition and molecular biomarkers of AD. RESULTS: WMHs were associated with advanced brain aging, AD-like atrophy, poorer cognition, and AD neuropathology in mild cognitive impairment (MCI)/AD and cognitively normal (CN) subjects. High WMH volume was associated with brain aging and cognitive decline occurring in an ≈10-year period in CN subjects. WMHs were associated with doubling the likelihood of amyloid beta (Aß) positivity after age 65. Brain aging, AD-like atrophy, and WMHs were better predictors of cognition than chronological age in MCI/AD. DISCUSSION: A Brain Chart quantifying brain-aging trajectories was established, enabling the systematic evaluation of individuals' brain-aging patterns relative to this large consortium.


Asunto(s)
Envejecimiento/fisiología , Péptidos beta-Amiloides/metabolismo , Encéfalo/crecimiento & desarrollo , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Atrofia , Biomarcadores , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Disfunción Cognitiva , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Sustancia Blanca/patología , Adulto Joven
8.
Brain Behav Immun ; 87: 388-396, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31935468

RESUMEN

BACKGROUND: Systemic inflammation has emerged as a risk factor for cognitive decline and Alzheimer's disease, but inflammation's effect on distributed brain networks is unclear. We examined the relationship between peripheral inflammatory markers and subsequent functional connectivity within five large-scale cognitive networks and evaluated the modifying role of cortical amyloid and APOE ε4 status. METHODS: Blood levels of soluble tumor necrosis factor-alpha receptor-1 and interleukin 6 were assessed in 176 participants (at baseline mean age: 65 (SD 9) years; 63% women; 85% cognitively normal, 15% mild cognitive impairment (MCI)) and were combined to derive an Inflammatory Index. Approximately six years later, participants underwent resting-state functional magnetic resonance imaging to quantify functional connectivity; a subset of 137 participants also underwent 11C Pittsburgh compound-B (PiB) PET imaging to assess cortical amyloid burden. RESULTS: Using linear regression models adjusted for demographic characteristics and cardiovascular risk factors, a higher Inflammatory Index was associated with lower connectivity within the Default Mode (ß = -0.013; 95% CI: -0.023, -0.003) and the Dorsal Attention Networks (ß = -0.017; 95% CI: -0.028, -0.006). The strength of these associations did not vary by amyloid status (positive/negative). However, there was a significant interaction between Inflammatory Index and APOE ε4 status, whereby ε4-positive participants with a higher Inflammatory Index demonstrated lower connectivity. Inflammatory Index was unrelated to connectivity within other large-scale cognitive networks (Control, Limbic, and Salience/Ventral Attention networks). CONCLUSION: Peripheral pro-inflammatory signaling in older adults without dementia, especially among APOE ε4-positive individuals, is associated with altered connectivity within two large-scale cognitive networks.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones
9.
Neuroimage ; 191: 337-349, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738207

RESUMEN

Quantification of tissue magnetic susceptibility using MRI offers a non-invasive measure of important tissue components in the brain, such as iron and myelin, potentially providing valuable information about normal and pathological conditions during aging. Despite many advances made in recent years on imaging techniques of quantitative susceptibility mapping (QSM), accurate and robust automated segmentation tools for QSM images that can help generate universal and sharable susceptibility measures in a biologically meaningful set of structures are still not widely available. In the present study, we developed an automated process to segment brain nuclei and quantify tissue susceptibility in these regions based on a susceptibility multi-atlas library, consisting of 10 atlases with T1-weighted images, gradient echo (GRE) magnitude images and QSM images of brains with different anatomic patterns. For each atlas in this library, 10 regions of interest in iron-rich deep gray matter structures that are better defined by QSM contrast were manually labeled, including caudate, putamen, globus pallidus internal/external, thalamus, pulvinar, subthalamic nucleus, substantia nigra, red nucleus and dentate nucleus in both left and right hemispheres. We then tested different pipelines using different combinations of contrast channels to bring the set of labels from the multi-atlases to each target brain and compared them with the gold standard manual delineation. The results showed that the segmentation accuracy using dual contrasts QSM/T1 pipeline outperformed other dual-contrast or single-contrast pipelines. The dice values of 0.77 ±â€¯0.09 using the QSM/T1 multi-atlas pipeline rivaled with the segmentation reliability obtained from multiple evaluators with dice values of 0.79 ±â€¯0.07 and gave comparable or superior performance in segmenting subcortical nuclei in comparison with standard FSL FIRST or recent multi-atlas package of volBrain. The segmentation performance of the QSM/T1 multi-atlas was further tested on QSM images acquired using different acquisition protocols and platforms and showed good reliability and reproducibility with average dice of 0.79 ±â€¯0.08 to manual labels and 0.89 ±â€¯0.04 in an inter-protocol manner. The extracted quantitative magnetic susceptibility values in the deep gray matter nuclei also correlated well between different protocols with inter-protocol correlation constants all larger than 0.97. Such reliability and performance was ultimately validated in an external dataset acquired at another study site with consistent susceptibility measures obtained using the QSM/T1 multi-atlas approach in comparison to those using manual delineation. In summary, we designed a susceptibility multi-atlas tool for automated and reliable segmentation of QSM images and for quantification of magnetic susceptibilities. It is publicly available through our cloud-based platform (www.mricloud.org). Further improvement on the performance of this multi-atlas tool is expected by increasing the number of atlases in the future.


Asunto(s)
Atlas como Asunto , Mapeo Encefálico/métodos , Encéfalo , Sustancia Gris , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Anciano , Encéfalo/anatomía & histología , Encéfalo/fisiología , Conjuntos de Datos como Asunto , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/fisiología , Humanos , Masculino , Persona de Mediana Edad
10.
Eur J Neurosci ; 50(12): 4004-4017, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31344282

RESUMEN

Traditionally, the dorsal lateral geniculate nucleus (LGN) and the inferior pulvinar (IPul) nucleus are considered as anatomically and functionally distinct thalamic nuclei. However, in several primate species it has also been established that the koniocellular (K) layers of LGN and parts of the IPul have a shared pattern of immunoreactivity for the calcium-binding protein calbindin. These calbindin-rich cells constitute a thalamic matrix system which is implicated in thalamocortical synchronisation. Further, the K layers and IPul are both involved in visual processing and have similar connections with retina and superior colliculus. Here, we confirmed the continuity between calbindin-rich cells in LGN K layers and the central lateral division of IPul (IPulCL) in marmoset monkeys. By employing a high-throughput neuronal tracing method, we found that both the K layers and IPulCL form comparable patterns of connections with striate and extrastriate cortices; these connections are largely different to those of the parvocellular and magnocellular laminae of LGN. Retrograde tracer-labelled cells and anterograde tracer-labelled axon terminals merged seamlessly from IPulCL into LGN K layers. These results support continuity between LGN K layers and IPulCL, providing an anatomical basis for functional congruity of this region of the dorsal thalamic matrix and calling into question the traditional segregation between LGN and the inferior pulvinar nucleus.


Asunto(s)
Cuerpos Geniculados/patología , Pulvinar/patología , Corteza Visual/patología , Vías Visuales/fisiología , Animales , Cuerpos Geniculados/fisiología , Neuronas/fisiología , Terminales Presinápticos/patología , Terminales Presinápticos/fisiología , Pulvinar/fisiología , Tálamo/patología , Tálamo/fisiología , Corteza Visual/fisiología
11.
Hum Brain Mapp ; 40(5): 1419-1433, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30376191

RESUMEN

Huntington's disease (HD) involves preferential and progressive degeneration of striatum and other subcortical regions as well as regional cortical atrophy. It is caused by a CAG repeat expansion in the Huntingtin gene, and the longer the expansion the earlier the age of onset. Atrophy begins prior to manifest clinical signs and symptoms, and brain atrophy in premanifest expansion carriers can be studied. We employed a diffeomorphometric pipeline to contrast subcortical structures' morphological properties in a control group with three disease groups representing different phases of premanifest HD (far, intermediate, and near to onset) as defined by the length of the CAG expansion and the participant's age (CAG-Age-Product). A total of 1,428 magnetic resonance image scans from 694 participants from the PREDICT-HD cohort were used. We found significant region-specific atrophies in all subcortical structures studied, with the estimated abnormality onset time varying from structure to structure. Heterogeneous shape abnormalities of caudate nuclei were present in premanifest HD participants estimated furthest from onset and putaminal shape abnormalities were present in participants intermediate to onset. Thalamic, hippocampal, and amygdalar shape abnormalities were present in participants nearest to onset. We assessed whether the estimated progression of subcortical pathology in premanifest HD tracked specific pathways. This is plausible for changes in basal ganglia circuits but probably not for changes in hippocampus and amygdala. The regional shape analyses conducted in this study provide useful insights into the effects of HD pathology in subcortical structures.


Asunto(s)
Encéfalo/diagnóstico por imagen , Enfermedad de Huntington/diagnóstico por imagen , Adulto , Anciano , Envejecimiento , Algoritmos , Atrofia , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Encéfalo/patología , Mapeo Encefálico , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/patología , Estudios de Cohortes , Expansión de las Repeticiones de ADN , Femenino , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Putamen/diagnóstico por imagen , Putamen/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
12.
PLoS Comput Biol ; 14(12): e1006610, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586384

RESUMEN

This paper presents a variational framework for dense diffeomorphic atlas-mapping onto high-throughput histology stacks at the 20 µm meso-scale. The observed sections are modelled as Gaussian random fields conditioned on a sequence of unknown section by section rigid motions and unknown diffeomorphic transformation of a three-dimensional atlas. To regularize over the high-dimensionality of our parameter space (which is a product space of the rigid motion dimensions and the diffeomorphism dimensions), the histology stacks are modelled as arising from a first order Sobolev space smoothness prior. We show that the joint maximum a-posteriori, penalized-likelihood estimator of our high dimensional parameter space emerges as a joint optimization interleaving rigid motion estimation for histology restacking and large deformation diffeomorphic metric mapping to atlas coordinates. We show that joint optimization in this parameter space solves the classical curvature non-identifiability of the histology stacking problem. The algorithms are demonstrated on a collection of whole-brain histological image stacks from the Mouse Brain Architecture Project.


Asunto(s)
Encéfalo/anatomía & histología , Modelos Anatómicos , Algoritmos , Animales , Mapeo Encefálico , Biología Computacional , Simulación por Computador , Técnicas Histológicas , Humanos , Imagenología Tridimensional , Funciones de Verosimilitud , Ratones , Modelos Neurológicos , Fantasmas de Imagen , Programas Informáticos
13.
Brain ; 141(3): 877-887, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365053

RESUMEN

Recent evidence indicates that measures from cerebrospinal fluid, MRI scans and cognitive testing obtained from cognitively normal individuals can be used to predict likelihood of progression to mild cognitive impairment several years later, for groups of individuals. However, it remains unclear whether these measures are useful for predicting likelihood of progression for an individual. The increasing focus on early intervention in clinical trials for Alzheimer's disease emphasizes the importance of improving the ability to identify which cognitively normal individuals are more likely to progress over time, thus allowing researchers to efficiently screen participants, as well as determine the efficacy of any treatment intervention. The goal of this study was to determine which measures, obtained when individuals were cognitively normal, predict on an individual basis, the onset of clinical symptoms associated with a diagnosis of mild cognitive impairment due to Alzheimer's disease. Cognitively normal participants (n = 224, mean baseline age = 57 years) were evaluated with a range of measures, including: cerebrospinal fluid amyloid-ß and phosphorylated-tau, hippocampal and entorhinal cortex volume, cognitive tests scores and APOE genotype. They were then followed to determine which individuals developed mild cognitive impairment over time (mean follow-up = 11 years). The primary outcome was progression from normal cognition to the onset of clinical symptoms of mild cognitive impairment due to Alzheimer's disease at 5 years post-baseline. Time-dependent receiver operating characteristic analyses examined the sensitivity and specificity of individual measures, and combinations of measures, as predictors of the outcome. Six measures, in combination, were the most parsimonious predictors of transition to mild cognitive impairment 5 years after baseline (area under the curve = 0.85; sensitivity = 0.80, specificity = 0.75). The addition of variables from each domain significantly improved the accuracy of prediction. The incremental accuracy of prediction achieved by adding individual measures or sets of measures successively to one another was also examined, as might be done when enrolling individuals in a clinical trial. The results indicate that biomarkers obtained when individuals are cognitively normal can be used to predict which individuals are likely to develop clinical symptoms at 5 years post-baseline. As a number of the measures included in the study could also be used as subject selection criteria in a clinical trial, the findings also provide information about measures that would be useful for screening in a clinical trial aimed at individuals with preclinical Alzheimer's disease.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/fisiopatología , Progresión de la Enfermedad , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Compuestos de Anilina/farmacocinética , Apolipoproteínas E/genética , Encéfalo/efectos de los fármacos , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/genética , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Curva ROC , Tiazoles/farmacocinética , Factores de Tiempo , Proteínas tau/líquido cefalorraquídeo
14.
Q Appl Math ; 77: 467-488, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866695

RESUMEN

Anatomy is undergoing a renaissance driven by the availability of large digital data sets generated by light microscopy. A central computational task is to map individual data volumes to standardized templates. This is accomplished by regularized estimation of a diffeomorphic transformation between the coordinate systems of the individual data and the template, building the transformation incrementally by integrating a smooth flow field. The canonical volume form of this transformation is used to quantify local growth, atrophy, or cell density. While multiple implementations exist for this estimation, less attention has been paid to the variance of the estimated diffeomorphism for noisy data. Notably, there is an infinite dimensional unobservable space defined by those diffeomorphisms which leave the template invariant. These form the stabilizer subgroup of the diffeomorphic group acting on the template. The corresponding flat directions in the energy landscape are expected to lead to increased estimation variance. Here we show that a least-action principle used to generate geodesics in the space of diffeomor-phisms connecting the subject brain to the template removes the stabilizer. This provides reduced-variance estimates of the volume form. Using simulations we demonstrate that the asymmetric large deformation diffeomorphic mapping methods (LDDMM), which explicitly incorporate the asymmetry between idealized template images and noisy empirical images, provide lower variance estimators than their symmetrized counterparts (cf. ANTs). We derive Cramer-Rao bounds for the variances in the limit of small deformations. Analytical results are shown for the Jacobian in terms of perturbations of the vector fields and divergence of the vector field.

15.
Hum Brain Mapp ; 38(4): 1875-1893, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28083895

RESUMEN

In this article, we present a unified statistical pipeline for analyzing the white matter (WM) tracts morphometry and microstructural integrity, both globally and locally within the same WM tract, from diffusion tensor imaging. Morphometry is quantified globally by the volumetric measurement and locally by the vertexwise surface areas. Meanwhile, microstructural integrity is quantified globally by the mean fractional anisotropy (FA) and trace values within the specific WM tract and locally by the FA and trace values defined at each vertex of its bounding surface. The proposed pipeline consists of four steps: (1) fully automated segmentation of WM tracts in a multi-contrast multi-atlas framework; (2) generation of the smooth surface representations for the WM tracts of interest; (3) common template surface generation on which the localized morphometric and microstructural statistics are defined and a variety of statistical analyses can be conducted; (4) multiple comparison correction to determine the significance of the statistical analysis results. Detailed herein, this pipeline has been applied to the corpus callosum in Alzheimer's disease (AD) with significantly decreased FA values and increased trace values, both globally and locally, being detected in patients with AD when compared to normal aging populations. A subdivision of the corpus callosum in both hemispheres revealed that the AD pathology primarily affects the body and splenium of the corpus callosum. Validation analyses and two multiple comparison correction strategies are provided. Hum Brain Mapp 38:1875-1893, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Enfermedad de Alzheimer/patología , Cuerpo Calloso/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Anisotropía , Mapeo Encefálico , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Cuerpo Calloso/patología , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Sustancia Blanca/patología
16.
Hum Brain Mapp ; 38(10): 5035-5050, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28657159

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Enfermedad de Huntington/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Atlas como Asunto , Atrofia , Encéfalo/patología , Encéfalo/fisiopatología , Estudios de Cohortes , Estudios Transversales , Imagen de Difusión Tensora/métodos , Progresión de la Enfermedad , Femenino , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Modelos Lineales , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Tamaño de los Órganos , Síntomas Prodrómicos , Expansión de Repetición de Trinucleótido
17.
Radiology ; 285(2): 629-639, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28678671

RESUMEN

Purpose To determine the improvement of radiologist efficiency and performance in the detection of bone metastases at serial follow-up computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm. Materials and Methods This retrospective study was approved by the institutional review board, and informed consent was waived. CT image pairs (previous and current scans of the torso) in 60 patients with cancer (primary lesion location: prostate, n = 14; breast, n = 16; lung, n = 20; liver, n = 10) were included. These consisted of 30 positive cases with a total of 65 bone metastases depicted only on current images and confirmed by two radiologists who had access to additional imaging examinations and clinical courses and 30 matched negative control cases (no bone metastases). Previous CT images were semiautomatically registered to current CT images by the algorithm, and TS images were created. Seven radiologists independently interpreted CT image pairs to identify newly developed bone metastases without and with TS images with an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Reading time was recorded, and usefulness was evaluated with subjective scores of 1-5, with 5 being extremely useful and 1 being useless. Significance of these values was tested with the Wilcoxon signed-rank test. Results The subtraction images depicted various types of bone metastases (osteolytic, n = 28; osteoblastic, n = 26; mixed osteolytic and blastic, n = 11) as temporal changes. The average reading time was significantly reduced (384.3 vs 286.8 seconds; Wilcoxon signed rank test, P = .028). The average figure-of-merit value increased from 0.758 to 0.835; however, this difference was not significant (JAFROC analysis, P = .092). The subjective usefulness survey response showed a median score of 5 for use of the technique (range, 3-5). Conclusion TS images obtained from serial CT scans using nonrigid registration successfully depicted newly developed bone metastases and showed promise for their efficient detection. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Interpretación de Imagen Radiográfica Asistida por Computador , Estudios Retrospectivos
18.
Neuroimage ; 125: 120-130, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26499813

RESUMEN

Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent years, with highly promising results. This approach, however, relies on a large number of atlases with accurate and consistent structural identifications. Here, we introduce our atlas inventories (n=90), which cover ages 4-82years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas library resource provides the flexibility to choose appropriate atlases for various studies with different age ranges and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection principles, is expected to support the further development of multi-atlas image segmentation.


Asunto(s)
Anatomía Artística , Atlas como Asunto , Encéfalo/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas/métodos , Adulto Joven
20.
Annu Rev Biomed Eng ; 17: 447-509, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26643025

RESUMEN

The Computational Anatomy project is the morphome-scale study of shape and form, which we model as an orbit under diffeomorphic group action. Metric comparison calculates the geodesic length of the diffeomorphic flow connecting one form to another. Geodesic connection provides a positioning system for coordinatizing the forms and positioning their associated functional information. This article reviews progress since the Euler-Lagrange characterization of the geodesics a decade ago. Geodesic positioning is posed as a series of problems in Hamiltonian control, which emphasize the key reduction from the Eulerian momentum with dimension of the flow of the group, to the parametric coordinates appropriate to the dimension of the submanifolds being positioned. The Hamiltonian viewpoint provides important extensions of the core setting to new, object-informed positioning systems. Several submanifold mapping problems are discussed as they apply to metamorphosis, multiple shape spaces, and longitudinal time series studies of growth and atrophy via shape splines.


Asunto(s)
Anatomía/métodos , Modelos Anatómicos , Anatomía/estadística & datos numéricos , Animales , Ingeniería Biomédica , Encéfalo/anatomía & histología , Biología Computacional , Ventrículos Cardíacos/anatomía & histología , Humanos , Imagenología Tridimensional , Conceptos Matemáticos , Metamorfosis Biológica , Modelos Cardiovasculares , Modelos Neurológicos , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA