Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(21): e0073222, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226960

RESUMEN

Increased drought intensity and frequency exposes soil bacteria to prolonged water stress. While numerous studies reported on behavioral and physiological mechanisms of bacterial adaptation to water stress, changes in bacterial cell surface properties during adaptation are not well researched. We studied adaptive changes in cell surface hydrophobicity (CSH) after exposure to osmotic (NaCl) and matric stress (polyethylene glycol 8000 [PEG 8000]) for six typical soil bacteria (Bacillus subtilis, Arthrobacter chlorophenolicus, Pseudomonas fluorescens, Novosphingobium aromaticivorans, Rhodococcus erythropolis, and Mycobacterium pallens) covering a wide range of cell surface properties. Additional physicochemical parameters (surface chemical composition, surface charge, cell size and stiffness) of B. subtilis and P. fluorescens were analyzed to understand their possible contribution to CSH development. Changes in CSH caused by osmotic and matric stress depend on strain and stress type. CSH of B. subtilis and P. fluorescens increased with stress intensity, R. erythropolis and M. pallens exhibited a generally high but constant contact angle, while the response of A. chlorophenolicus and N. aromaticivorans depended on growth conditions and stress type. Osmotically driven changes in CSH of B. subtilis and P. fluorescens are accompanied by increasing surface N/C ratio, suggesting an increase in protein concentration within the cell wall. Cell envelope proteins thus presumably control bacterial CSH in two ways: (i) by increases in the relative density of surface proteins due to efflux of cytoplasmic water and subsequent cell shrinkage, and (ii) by destabilization of cell wall proteins, resulting in conformational changes which render the surface more hydrophobic. IMPORTANCE Changes in precipitation frequency, intensity, and temporal distribution are projected to result in increased frequency and intensity of droughts and heavy rainfall events. Prolonged droughts can promote the development of soil water repellency (SWR); this impacts the infiltration and distribution of water in the soil profile, exposing soil microorganisms to water stress. Exposure to water stress has recently been reported to result in increased cell surface hydrophobicity. However, the mechanism of this development is poorly understood. This study investigates the changes in the physicochemical properties of bacterial cell surfaces under water stress as a possible mechanism of increased surface hydrophobicity. Our results improve understanding of the microbial response to water stress in terms of surface properties, the variations in stress response depending on cell wall composition, and its contribution to the development of SWR.


Asunto(s)
Deshidratación , Suelo , Humanos , Suelo/química , Propiedades de Superficie , Microbiología del Suelo , Sequías
3.
Appl Environ Microbiol ; 82(10): 2902-2908, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944849

RESUMEN

Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and -1.5 MPa. In a multiple-microcosm approach, we used a green fluorescent protein (GFP)-tagged derivative of the soil bacterium Pseudomonas putida KT2440 as a model organism and sodium benzoate as a representative of polar aromatic contaminants. We found that decreasing ΔΨo and ΔΨm values slowed bacterial dispersal in the system, leading to decelerated growth and benzoate degradation. In contrast, dispersal networks facilitated bacterial movement at ΔΨo and ΔΨm values between 0 and -0.5 MPa and thus improved the absolute biodegradation performance by up to 52 and 119% for ΔΨo and ΔΨm, respectively. This strong functional interrelationship was further emphasized by a high positive correlation between population dispersal, population growth, and degradation. We propose that dispersal networks may sustain the functionality of microbial ecosystems at low osmotic and matric potentials.


Asunto(s)
Benzoatos/metabolismo , Ecosistema , Hongos/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Pseudomonas putida/metabolismo , Microbiología del Agua , Agua/química , Biotransformación , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Pseudomonas putida/crecimiento & desarrollo , Coloración y Etiquetado
4.
Appl Microbiol Biotechnol ; 100(8): 3433-49, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26921182

RESUMEN

Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature compost materials. Compost addition can thus be considered as a 'super-bioaugmentation' with a complex natural mixture of degrading microorganisms, combined with a 'biostimulation' by nutrient containing readily to hardly degradable organic substrates. It also improves the abiotic soil conditions, thus enhancing microbial activity in general. Finally, this minireview also aims at guiding potential users towards full exploitation of the potentials of this approach.


Asunto(s)
Bacterias/metabolismo , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Restauración y Remediación Ambiental/instrumentación , Suelo/química
5.
Appl Microbiol Biotechnol ; 99(22): 9813-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26216241

RESUMEN

Polycyclic aromatic hydrocarbons (PAH) are toxic pollutants widely distributed in the environment due to natural and anthropogenic processes. In order to mitigate tar oil contaminations with PAH, research on improving bioremediation approaches, which are sometimes inefficient, is needed. However, the knowledge on the fate of PAH-derived carbon and the microbial degraders in particular in compost-supplemented soils is still limited. Here we show the PAH carbon turnover mass balance in microcosms with soil-compost mixtures or in farmyard fertilized soil using [(13)C6]-pyrene as a model PAH. Complete pyrene degradation of 100 mg/kg of soil was observed in all supplemented microcosms within 3 to 5 months, and the residual (13)C was mainly found as carbon converted to microbial biomass. Long-term fertilization of soil with farmyard manure resulted in pyrene removal efficiency similar to compost addition, although with a much longer lag phase, higher mineralization, and lower carbon incorporation into the biomass. Organic amendments either as long-term manure fertilization or as compost amendment thus play a key role in increasing the PAH-degrading potential of the soil microbial community. Phospholipid fatty acid stable isotope probing (PLFA-SIP) was used to trace the carbon within the microbial population and the amount of biomass formed from pyrene degradation. The results demonstrate that complex microbial degrader consortia rather than the expected single key players are responsible for PAH degradation in organic-amended soil.


Asunto(s)
Consorcios Microbianos , Pirenos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo , Biomasa , Biotransformación , Isótopos de Carbono/análisis , Citosol/química , Ácidos Grasos/análisis , Marcaje Isotópico , Fosfolípidos/análisis
6.
Appl Microbiol Biotechnol ; 99(2): 957-68, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25194840

RESUMEN

Natural attenuation maybe a cost-efficient option for bioremediation of contaminated sites but requires knowledge about the activity of degrading microbes under in situ conditions. In order to link microbial activity to the spatial distribution of contaminant degraders, we combined the recently improved in situ microcosm approach, so-called 'direct-push bacterial trap' (DP-BACTRAP), with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis on samples from contaminated constructed wetlands. This approach is based on initially sterile microcosms amended with (13)C-labelled benzene as a source of carbon and energy for microorganisms. The microcosms were introduced directly in the constructed wetland, where they were colonised by indigenous microorganisms from the sediment. After incubation in the field, the samples were analysed by NanoSIMS, scanning electron microscopy (SEM) and fluorescence microscopy in order to visualise (13)C-labelled microbial biomass on undisturbed samples from the microcosms. With the approach developed, we successfully visualised benzene-degrading microbes on solid materials with high surface area by means of NanoSIMS. Moreover, we could demonstrate the feasibility of NanoSIMS analysis of unembedded porous media with a highly complex topography, which was frequently reasoned to not lead to sufficient results.


Asunto(s)
Bacterias/metabolismo , Benceno/química , Biomasa , Biodegradación Ambiental , Hibridación Fluorescente in Situ , Humedales
7.
Environ Sci Technol ; 48(15): 8717-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24967613

RESUMEN

Metabolism of a low-solubility substrate is limited by dissolution and availability and can hardly be determined. We developed a numerical model for simultaneously calculating dissolution kinetics of such substrates and their metabolism and microbial growth (Monod kinetics with decay) and tested it with three aerobic phenanthrene (PHE) degraders: Novosphingobium pentaromativorans US6-1, Sphingomonas sp. EPA505, and Sphingobium yanoikuyae B1. PHE was present as microcrystals, providing non-limiting conditions for growth. Total PHE and protein concentration were tracked over 6-12 days. The model was fitted to the test results for the rates of dissolution, metabolism, and growth. The strains showed similar efficiency, with vmax values of 12-18 g dw g(-1) d(-1), yields of 0.21 g g(-1), maximum growth rates of 2.5-3.8 d(-1), and decay rates of 0.04-0.05 d(-1). Sensitivity analysis with the model shows that (i) retention in crystals or NAPLs or by sequestration competes with biodegradation, (ii) bacterial growth conditions (dissolution flux and resulting chemical activity of substrate) are more relevant for the final state of the system than the initial biomass, and (iii) the desorption flux regulates the turnover in the presence of solid-state, sequestered (aged), or NAPL substrate sources.


Asunto(s)
Modelos Biológicos , Fenantrenos/metabolismo , Sphingomonas/metabolismo , Aerobiosis , Biodegradación Ambiental , Biomasa , Cinética , Solubilidad , Sphingomonas/crecimiento & desarrollo
8.
Front Microbiol ; 15: 1321059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371938

RESUMEN

Catalytic activity of microbial communities maintains the services and functions of soils. Microbial communities require energy and carbon for microbial growth, which they obtain by transforming organic matter (OM), oxidizing a fraction of it and transferring the electrons to various terminal acceptors. Quantifying the relations between matter and energy fluxes is possible when key parameters such as reaction enthalpy (∆rH), energy use efficiency (related to enthalpy) (EUE), carbon use efficiency (CUE), calorespirometric ratio (CR), carbon dioxide evolution rate (CER), and the apparent specific growth rate (µapp) are known. However, the determination of these parameters suffers from unsatisfying accuracy at the technical (sample size, instrument sensitivity), experimental (sample aeration) and data processing levels thus affecting the precise quantification of relationships between carbon and energy fluxes. To address these questions under controlled conditions, we analyzed microbial turnover processes in a model soil amended using a readily metabolizable substrate (glucose) and three commercial isothermal microcalorimeters (MC-Cal/100P, TAM Air and TAM III) with different sample sizes meaning varying volume-related thermal detection limits (LODv) (0.05-1mW L-1). We conducted aeration experiments (aerated and un-aerated calorimetric ampoules) to investigate the influence of oxygen limitation and thermal perturbation on the measurement signal. We monitored the CER by measuring the additional heat caused by CO2 absorption using a NaOH solution acting as a CO2 trap. The range of errors associated with the calorimetrically derived µapp, EUE, and CR was determined and compared with the requirements for quantifying CUE and the degree of anaerobicity (ηA). Calorimetrically derived µapp and EUE were independent of the instrument used. However, instruments with a low LODv yielded the most accurate results. Opening and closing the ampoules for oxygen and CO2 exchange did not significantly affect metabolic heats. However, regular opening during calorimetrically derived CER measurements caused significant measuring errors due to strong thermal perturbation of the measurement signal. Comparisons between experimentally determined CR, CUE,ηA, and modeling indicate that the evaluation of CR should be performed with caution.

9.
Sci Rep ; 13(1): 17146, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816775

RESUMEN

Studying bacterial adhesion to mineral surfaces is crucial for understanding soil properties. Recent research suggests that minimal coverage of sand particles with cell fragments significantly reduces soil wettability. Using atomic force microscopy (AFM), we investigated the influence of hypertonic stress on Pseudomonas fluorescens adhesion to four different minerals in water. These findings were compared with theoretical XDLVO predictions. To make adhesion force measurements comparable for irregularly shaped particles, we normalized adhesion forces by the respective cell-mineral contact area. Our study revealed an inverse relationship between wettability and the surface-organic carbon content of the minerals. This relationship was evident in the increased adhesion of cells to minerals with decreasing wettability. This phenomenon was attributed to hydrophobic interactions, which appeared to be predominant in all cell-mineral interaction scenarios alongside with hydrogen bonding. Moreover, while montmorillonite and goethite exhibited stronger adhesion to stressed cells, presumably due to enhanced hydrophobic interactions, kaolinite showed an unexpected trend of weaker adhesion to stressed cells. Surprisingly, the adhesion of quartz remained independent of cell stress level. Discrepancies between measured cell-mineral interactions and those calculated by XDLVO, assuming an idealized sphere-plane geometry, helped us interpret the chemical heterogeneity arising from differently exposed edges and planes of minerals. Our results suggest that bacteria may have a significant impact on soil wettability under changing moisture condition.


Asunto(s)
Pseudomonas fluorescens , Suelo , Pseudomonas fluorescens/metabolismo , Presión Osmótica , Microscopía de Fuerza Atómica/métodos , Minerales/metabolismo
10.
FEMS Microbes ; 4: xtac028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333443

RESUMEN

Determination of the effect of water stress on the surface properties of bacteria is crucial to study bacterial induced soil water repellency. Changes in the environmental conditions may affect several properties of bacteria such as the cell hydrophobicity and morphology. Here, we study the influence of adaptation to hypertonic stress on cell wettability, shape, adhesion, and surface chemical composition of Pseudomonas fluorescens. From this we aim to discover possible relations between the changes in wettability of bacterial films studied by contact angle and single cells studied by atomic and chemical force microscopy (AFM, CFM), which is still lacking. We show that by stress the adhesion forces of the cell surfaces towards hydrophobic functionalized probes increase while they decrease towards hydrophilic functionalized tips. This is consistent with the contact angle results. Further, cell size shrunk and protein content increased upon stress. The results suggest two possible mechanisms: Cell shrinkage is accompanied by the release of outer membrane vesicles by which the protein to lipid ratio increases. The higher protein content increases the rigidity and the number of hydrophobic nano-domains per surface area.

11.
Environ Pollut ; 297: 118790, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016983

RESUMEN

Glyphosate can be degraded by soil microorganisms rapidly and is impacted by temperature and soil properties. Enhanced temperature and total organic carbon (TOC) as well as reduced pH increased the rate of 13C315N-glyphosate conversion to CO2 and biogenic non-extractable residues (bioNERs) in a Haplic Chernozem (Muskus et al., 2019) and in a Humic Cambisol (Muskus et al., 2020). To date; however, the combined effect of temperature and TOC or pH on microbial community composition and glyphosate degraders in these two soils has not been investigated. Phospholipid fatty acid [PLFA] biomarker analysis combined with 13C labeling was employed to investigate the effect of two soil properties (pH, TOC) and of three temperatures (10 °C, 20 °C, 30 °C) on soil microorganisms. Before incubation, the properties of a Haplic Chernozem and a Humic Cambisol were adjusted to obtain five treatments: (a) Control (Haplic Chernozem: 2.1% TOC and pH 6.6; Humic Cambisol: 3% TOC and pH 7.0), (b) 3% TOC (Haplic Chernozem) or 4% TOC (Humic Cambisol), (c) 4% TOC (Haplic Chernozem) or 5% TOC (Humic Cambisol), (d) pH 6.0 (Haplic Chernozem) or pH 6.5 (Humic Cambisol), and (e) pH 5.5 for both soils. All treatments were amended with 50 mg kg-1 glyphosate and incubated at 10 °C, 20 °C or 30 °C. We observed an increase in respiration, microbial biomass and glyphosate mineralization with incubation temperature. Although respiration and microbial biomass in the Humic Cambisol was higher, the microorganisms in the Haplic Chernozem were more active in glyphosate degradation. Increased TOC shifted the microbiome and the 13C-glyphosate degraders towards Gram-positive bacteria in both soils. However, the abundance of 13C-PLFAs indicative for the starvation of Gram-negative bacteria increased with increasing TOC or decreasing pH at higher temperatures. Gram-negative bacteria thus may have been involved in earlier stages of glyphosate degradation.


Asunto(s)
Microbiota , Suelo , Carbono , Glicina/análogos & derivados , Concentración de Iones de Hidrógeno , Microbiología del Suelo , Temperatura , Glifosato
12.
Water Res ; 226: 119211, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252297

RESUMEN

Planted filters are often used to remove pesticides from runoff water. However, the detailed fate of pesticides in the planted filters still remains elusive. This hampers an accurate assessment of environmental risks of the pesticides related to their fate and thereby development of proper mitigation strategies. In addition, a test system for the chemical fate analysis including plants and in particular for planted filters is not well established yet. Therefore, we developed a microcosm test to simulate the fate of pesticide in planted filters, and applied 2-13C,15N-glyphosate as a model pesticide. The fate of 2-13C,15N-glyphosate in the planted microcosms over 31 day-incubation period was balanced and compared with that in the unplanted microcosms. The mass balance of 2-13C,15N-glyphosate turnover included 13C mineralization, degradation products, and the 13C and 15N incorporation into the rhizosphere microbial biomass and plants. We observed high removal of glyphosate (> 88%) from the water mainly due to adsorption on gravel in both microcosms. More glyphosate was degraded in the planted microcosms with 4.1% of 13C being mineralized, 1.5% of 13C and 3.8% of 15N being incorporated into microbial biomass. In the unplanted microcosms, 1.1% of 13C from 2-13C,15N-glyphosate was mineralized, and only 0.2% of 13C and 0.1% of 15N were assimilated into microbial biomass. The total recovery of 13C and 15N was 81% and 85% in planted microcosms, and 91% and 93% in unplanted counterparts, respectively. The microcosm test was thus proven to be feasible for mass balance assessments of the fate of non-volatile chemicals in planted filters. The results of such studies could help better manage and design planted filters for pesticide removal.


Asunto(s)
Plaguicidas , Plaguicidas/metabolismo , Agua/metabolismo , Glicina , Plantas/metabolismo , Glifosato
13.
Environ Sci Technol ; 45(3): 999-1006, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21186826

RESUMEN

During organic contaminant degradation in soil, bound or nonextractable residues (NER) are formed. Part of these residues may be biogenic, because degrading microorganisms assimilate carbon derived from the pollutant and mineralized CO(2) to form cellular components for example, [fatty acids (FA) and amino acids (AA)], which are subsequently stabilized within soil organic matter (SOM). We investigated the formation and fate of FA and AA from biodegradation of (13)C(6)-2,4-D in soil and the incorporation of the (13)C-label into living biomass via (13)CO(2) fixation. After 64 days of incubation, (13)C-AA in SOM indicated that 44% of the initially applied (13)C(6)-2,4-D equivalents had been converted to microbial biomass and finally to biogenic residues. The intermediate maximum of (13)C-FA in SOM indicated a 20% conversion of (13)C(6)-2,4-D to biomass, but (13)C-FA decreased to 50% of that value whereas (13)C-AA in the SOM remained stable. We provide the first evidence that nearly all bound residues from 2,4-D are biogenic, containing natural microbial residues stabilized in SOM. Because of biogenic residue formation, the potential risk of bound residues from readily metabolized xenobiotics in soils is highly overestimated. Hence, the formation of biogenic residues must be considered in general when performing mass balances of pollutant biodegradation in soils.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Herbicidas/metabolismo , Residuos de Plaguicidas/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , Monitoreo del Ambiente , Suelo/química
14.
Water Res ; 207: 117776, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758439

RESUMEN

Surface water runoff can export pesticides from agricultural fields into adjacent aquatic ecosystems, where they may pose adverse effects to organisms. Constructed wetlands (CWs) are widely used to treat agricultural runoff contaminated by pesticides, but the removal of hydrophilic pesticides is usually low. In this study, we suggest superabsorbent polymer (SAP), a cross-linked hydrophilic polymer, as a supplement to substrates of CWs and tested the hypothesis that SAP results in an enhanced removal of hydrophilic pesticides. Therefore, batch experiments were conducted to study the retention capacity of water-saturated SAP (w-SAP) for several hydrophilic pesticides. Retention of the pesticides on w-SAP was related to the ionization state and water solubility of the pesticides. The retention of neutral pesticides, imidacloprid, metalaxyl and propiconazole, was about 20% higher than that measured for anionic pesticides, bentazone, glyphosate and MCPA. The retention of the pesticides by w-SAP mainly resulted from their distribution in the gel-water phase of w-SAP, while less water soluble pesticides might have also been adsorbed on the molecular backbone of SAP. Furthermore, we tested the efficacy of w-SAP for treatment of runoff water contaminated by pesticides in lab-scale horizontal subsurface flow CWs. SAP in CWs improved the removal of the pesticides, including the recalcitrant ones. The removal enhancement was owing to the increase of hydraulic retention time and improvement of biodegradation. The removal of the pesticides in SAP containing CWs was > 93% for MCPA, glyphosate, and propiconazole, 62 - 99% for imidacloprid, 50 - 84% for metalaxyl, and 38 - 73% for bentazone. In the control gravel CWs, the removal was > 98% for glyphosate, generally > 83% for MCPA and propiconazole, 46 - 98% for imidacloprid, 32 - 97% for metalaxyl, and 9 - 96% for bentazone.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Ecosistema , Plaguicidas/análisis , Polímeros , Contaminantes Químicos del Agua/análisis , Humedales
15.
Sci Total Environ ; 753: 141870, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207453

RESUMEN

One important route of degradation of herbicide pendimethalin in soil leads to formation of non-extractable residues (NER). To investigate NER nature (irreversibly, chemically bound, including possible biogenic NER, or strongly sorbed and entrapped) residues of 14C-labelled pendimethalin in soil were investigated after conventional extraction with organic solvents by silylation. After 400 days of incubation, 32.0% of applied radioactivity (AR) was transformed into NER, 39.9% AR remained extractable. Mineralization reached 26.2% AR. Additionally, 14C-pendimethalin was incubated in soil amended with compost for 217 days to investigate the influence of organic amendments on NER formation. NER amounted to 37.8% AR, with 57.9% AR remaining extractable. Mineralization was negligible (1.4% AR). For all sampling times only low amounts of radioactivity were entrapped (<5% AR) in soil without compost amendment. Pendimethalin was present only in trace amounts (ca. 0.4% AR), other released residues consisted of undefined fractions (sum ≈2% AR). In soil amended with compost, silylation overall resulted in release of higher amounts of radioactivity (19% AR). Addition of compost led to an increase in potential entrapment and sorption sites for pendimethalin, forming higher amounts of strongly sorbed, entrapped residues. Furthermore, potential release of non-extractable pendimethalin residues was investigated by incubation of solvent-extracted soil (without compost amendment) mixed with fresh soil for additional 3 months. NER were partly mineralized (7% AR) and 20% became extractable with organic solvents. However, no pendimethalin or any known metabolites were found. It can be concluded that no parent pendimethalin was found and NER of pendimethalin in soil are mainly formed by covalent binding to organic matrix with only low potential of remobilization under natural conditions.

16.
Sci Total Environ ; 778: 146114, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030358

RESUMEN

Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.

17.
Environ Int ; 142: 105867, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32585504

RESUMEN

Amendment of soils with plant residues is common practice for improving soil quality. In addition to stimulated microbial activity, the supply of fresh soluble organic (C) from litter may accelerate the microbial degradation of chemicals in soils. Therefore, the aim of this study was to test whether the maize litter enhances degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) and increases formation of non-toxic biogenic non-extractable residues (bioNERs). Soil was amended with 13C6-MCPA and incubated with or without litter addition on the top. Three soil layers were sampled with increasing distance from the top: 0-2 mm, 2-5 mm and 5-20 mm; and the mass balance of 13C6-MCPA transformation determined. Maize litter promoted microbial activity, mineralization of 13C6-MCPA and bioNER formation in the upper two layers (0-2 and 2-5 mm). The mineralization of 13C6-MCPA in soil with litter increased to 27% compared to only 6% in the control. Accordingly, maize addition reduced the amount of extractable residual MCPA in soil from 77% (control) to 35% of initially applied 13C6-MCPA. While non-extractable residues (NERs) were <6% in control soil, litter addition raised NERs to 21%. Thereby, bioNERs comprised 14% of 13C6-MCPA equivalents. We found characteristic differences of bioNER formation with distance to litter. While total NERs in soil at a distance of 2-5 mm were mostly identified as 13C-bioNERs (97%), only 45-46% of total NERs were assigned to bioNERs in the 0-2 and 5-20 mm layers. Phospholipid fatty acid analysis indicated that fungi and Gram-negative bacteria were mainly involved in MCPA degradation. Maize-C particularly stimulated fungal activity in the adjacent soil, which presumably facilitated non-biogenic NER formation. The plant litter accelerated formation of both non-toxic bioNERs and non-biogenic NERs. More studies on the structural composition of non-biogenic NERs with toxicity potential are needed for future recommendations on litter addition in agriculture.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Contaminantes del Suelo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
18.
Environ Pollut ; 259: 113767, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31887598

RESUMEN

Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg-1 of 13C315N-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of 13C315N-glyphosate from 13 to 20% (10 °C) to 32-39% (20 °C) and 41-51% (30 °C) and decreased the amounts of extractable 13C315N-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6-12% (20 °C) and 1.2-3.2% (30 °C). Extractable 13C315N-glyphosate increased with higher TOC and higher pH. Total 13C-NER were similar in all treatments and at all temperatures (47%-60%), indicating that none of the factors studied affected the amount of total 13C-NER. However, 13C-bioNER dominated within the 13C-NER pool in the control and the 4% TOC treatment (76-88% of total 13C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 13C-bioNER were lower (47-61% at 20 °C and 30 °C). In contrast, the 15N-bioNER pool was small (between 14 and 39% of the 15N-NER). Thus, more than 60% of 15N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.


Asunto(s)
Carbono/análisis , Contaminantes del Suelo , Suelo/química , Temperatura , Colombia , Monitoreo del Ambiente , Glicina/análogos & derivados , Herbicidas , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/química , Termodinámica , Glifosato
19.
Sci Total Environ ; 658: 697-707, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30580222

RESUMEN

Glyphosate is the best-selling and the most-used broad-spectrum herbicide worldwide. Microbial conversion of glyphosate to CO2 and biogenic non-extractable residues (bioNER) leads to its complete degradation. The degradation of glyphosate may vary in different soils and it depends on environmental conditions and soil properties. To date, the influence of temperature, soil pH and total organic carbon (TOC) on microbial conversion of glyphosate to bioNER has not been investigated yet. The pH or TOC of an agricultural original soil (pH 6.6, TOC 2.1%) was modified using sulfuric acid or farmyard manure (FYM), respectively. Each treatment: original (I), 3% TOC (II), 4% TOC (III), pH 6.0 (IV) and pH 5.5 (V) was amended with 13C315N-glyphosate and incubated at 10 °C, 20 °C and 30 °C for 39 days. The temperature was the main factor controlling the mineralization and the extractable 13C315N-glyphosate, whereas higher TOC content and lower pH resulted in enhanced formation of 13C-bioNER. After 39 days the cumulative mineralization of 13C-glyphosate was in the range of 12-22% (10 °C), 37-47% (20 °C) and 43-54% (30 °C). Extractable residues of 13C-glyphosate were in the range of 10-21% (10 °C) and 4-10% (20 °C and 30 °C); whereas those of 15N-glyphosate were as follows 20-32% (10 °C) and 12-25% (20 °C and 30 °C). The 13C-NER comprised about 53-69% of 13C-mass balance in soils incubated at 10 °C, but 40-50% in soils incubated at 20 °C and 30 °C. The 15N-NER were higher than the 13C-NER and varied between 62% and 74% at 10 °C, between 53% and 81% at 20 °C and 30 °C. A major formation of 13C-bioNER (72-88% of 13C-NER) at 20 °C and 30 °C was noted in soil amended with FYM. An increased formation of 15N-bioNER (14-17% of 15N-NER) was also observed in FYM-amended soil. The xenobiotic 15N-NER had a major share within the 15N-NER and thus need to be considered when assessing the environmental risk of glyphosate-NER.


Asunto(s)
Carbono/metabolismo , Monitoreo del Ambiente , Glicina/análogos & derivados , Herbicidas/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Isótopos de Carbono/análisis , Granjas , Glicina/metabolismo , Concentración de Iones de Hidrógeno , Isótopos de Nitrógeno/análisis , Compuestos Orgánicos/metabolismo , Temperatura , Glifosato
20.
Environ Pollut ; 242(Pt A): 769-777, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30031310

RESUMEN

Bromoxynil is a widely used nitrile herbicide applied to maize and other cereals in many countries. To date, still little is known about bromoxynil turnover and the structural identity of bromoxynil non-extractable residues (NER) which are reported to occur in high amounts. Therefore, we investigated the microbial turnover of 13C-labeled bromoxynil for 32 days. A focus was laid on the estimation of biogenic NER based on the turnover of 13C into amino acids (AA). At the end, 25% of 13C6-bromoxynil equivalents were mineralized, 2% assigned to extractable residues and 72.5% to NER. Based on 12% in the 13C-total AA and an assumed share of AA of 50% in microbial biomass we arrived at 24% of total 13C-biogenic NER. About 33% of the total 13C-NER could thus be explained by 13C-biogenic NER; 67% was unknown and by definition xenobiotic NER with potential for toxicity. The 13C label from 13C6-bromoxynil was mainly detected in the humic acids (28.5%), but significant amounts were also found in non-humics (17.6%), fulvic acids (13.2%) and humins (12.7%). The 13C-total amino acids hydrolyzed from humic acids, humins and fulvic acids amounted to 5.2%, 6.1% and 1.2% of 13C6-bromoxynil equivalents, respectively, corresponding to total 13C-biogenic NER amounts of 10.4%, 12.2% and 2.4%. The humins contained mostly 13C-biogenic NER, whereas the humic and fulvic acids may be dominated by the xenobiotic NER. Due to the high proportion of unknown 13C-NER and particularly in the humic and fulvic acids, future studies should focus on the detailed characterization of these fractions.


Asunto(s)
Isótopos de Carbono/análisis , Nitrilos/análisis , Residuos de Plaguicidas/química , Suelo/química , Benzopiranos/análisis , Biomasa , Herbicidas/análisis , Sustancias Húmicas/análisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA