Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Pathog ; 20(1): e1011956, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295116

RESUMEN

Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Femenino , Ratones , Animales , Herpesvirus Suido 1/fisiología , Progesterona/farmacología , Progesterona/metabolismo , Internalización del Virus , Lisosomas/metabolismo , Antivirales/metabolismo , Seudorrabia/metabolismo
2.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607975

RESUMEN

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Asunto(s)
Autofagia Mediada por Chaperones , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Lipólisis , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Membrana de los Lisosomas , ARN Interferente Pequeño
3.
J Virol ; 98(1): e0166423, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054618

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.


Asunto(s)
Herpesvirus Suido 1 , Lipoproteínas LDL , Seudorrabia , Enfermedades de los Porcinos , Animales , Humanos , Ratones , Herpesvirus Suido 1/fisiología , Lipoproteínas LDL/metabolismo , Proproteína Convertasa 9 , Seudorrabia/virología , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Línea Celular
4.
Vet Res ; 55(1): 68, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807225

RESUMEN

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Liberación del Virus , Proteínas de Unión al GTP rab , Animales , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Porcinos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Ratones , Seudorrabia/virología , Ensamble de Virus/fisiología , Enfermedades de los Porcinos/virología , Línea Celular
5.
J Med Virol ; 95(3): e28591, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807585

RESUMEN

Proteins UL31 and UL34 encoded by alphaherpesvirus are critical for viral primary envelopment and nuclear egress. We report here that pseudorabies virus (PRV), a useful model for research on herpesvirus pathogenesis, uses N-myc downstream regulated 1 (NDRG1) to assist the nuclear import of UL31 and UL34. PRV promoted NDRG1 expression through DNA damage-induced P53 activation, which was beneficial to viral proliferation. PRV induced the nuclear translocation of NDRG1, and its deficiency resulted in the cytosolic retention of UL31 and UL34. Therefore, NDRG1 assisted the nuclear import of UL31 and UL34. Furthermore, in the absence of the nuclear localization signal (NLS), UL31 could still translocate to the nucleus, and NDRG1 lacked an NLS, thus suggesting the existence of other mediators for the nuclear import of UL31 and UL34. We demonstrated that heat shock cognate protein 70 (HSC70) was the key factor in this process. UL31 and UL34 interacted with the N-terminal domain of NDRG1 and the C-terminal domain of NDRG1 bound to HSC70. Replenishment of HSC70ΔNLS in HSC70-knockdown cells, or interference in importin α expression, abolished the nuclear translocation of UL31, UL34, and NDRG1. These results indicated that NDRG1 employs HSC70 to facilitate viral proliferation in the nuclear import of PRV UL31 and UL34.


Asunto(s)
Herpesvirus Suido 1 , Proteínas Nucleares , Animales , Humanos , Transporte Activo de Núcleo Celular , Proteínas Nucleares/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Núcleo Celular/metabolismo , Herpesvirus Suido 1/genética
6.
J Virol ; 95(16): e0076021, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037418

RESUMEN

Pseudorabies virus (PRV) is the causative pathogen of Aujeszky's disease in pigs. Although vaccination is currently applied to prevent the morbidity of PRV infection, new applications are urgently needed to control this infectious disease. Poly(ADP-ribose) polymerase 1 (PARP1) functions in DNA damage repair. We report here that pharmacological and genetic inhibition of PARP1 significantly influenced PRV replication. Moreover, we demonstrate that inhibition of PARP1 induced DNA damage response and antiviral innate immunity. Mechanistically, PARP1 inhibition-induced DNA damage response resulted in the release of double-stranded DNA (dsDNA) into the cytosol, where dsDNA interacted with cyclic GMP-AMP (cGAMP) synthase (cGAS). cGAS subsequently catalyzed cGAMP production to activate the STING/TBK1/IRF3 innate immune signaling pathway. Furthermore, challenge of mice with PARP1 inhibitor stimulated antiviral innate immunity and protected mice from PRV infection in vivo. Our results demonstrate that PARP1 inhibitors may be used as a new strategy to prevent Aujeszky's disease in pigs. IMPORTANCE Aujeszky's disease is a notifiable infectious disease of pigs and causes economic losses worldwide in the pig industry. The causative pathogen is PRV, which is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV has a wide range of hosts, such as ruminants, carnivores, and rodents. More seriously, recent reports suggest that PRV can cause human endophthalmitis and encephalitis, which indicates that PRV may be a potential zoonotic pathogen. Although vaccination is currently the major strategy used to control the disease, new applications are also urgently needed for the pig industry and public health. We report here that inhibition of PARP1 induces DNA damage-induced antiviral innate immunity through the cGAS-STING signaling pathway. Therefore, PARP1 is a therapeutic target for PRV infection as well as alphaherpesvirus infection.


Asunto(s)
Antivirales/inmunología , Daño del ADN/inmunología , Inmunidad Innata/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Seudorrabia/tratamiento farmacológico , Animales , Antivirales/farmacología , Línea Celular , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Seudorrabia/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Porcinos , Replicación Viral/efectos de los fármacos
7.
PLoS Pathog ; 16(3): e1008429, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208449

RESUMEN

Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases.


Asunto(s)
Proteínas de Ciclo Celular/inmunología , Daño del ADN/inmunología , Virus ADN/inmunología , Inmunidad Innata , Proteínas Nucleares/inmunología , Virus ARN/inmunología , Factores de Transcripción/inmunología , Células A549 , Animales , Chlorocebus aethiops , Infecciones por Virus ADN/inmunología , Perros , Femenino , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Células RAW 264.7 , Infecciones por Virus ARN/inmunología , Porcinos , Células Vero
8.
Arch Virol ; 167(12): 2623-2631, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269412

RESUMEN

Next-generation sequencing enables the evaluation of gene expression changes resulting from virus-host interactions at the RNA level. Pseudorabies virus (PRV) causes substantial economic loss in the swine industry. Recent research has revealed that PRV can be transmitted to and infect humans as well. To identify physiopathological and pathological responses post-PRV infection, we characterized transcriptomic changes in the murine RAW 264.7 cell line over the course of 36 h. In total, 156, 153, and 190 differentially expressed genes were identified at 2 h, 12 h, and 36 h, respectively. Seven differentially expressed genes (Trim27, Ccdc117, Mrps12, Ccl4, Cerkl, Ubald1, and Hmga1-rs1) were present across all treatment groups. Our findings expand our knowledge of gene regulation and immune response following PRV infection. These differentially expressed genes can subsequently improve our understanding of PRV pathogenesis.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Ratones , Herpesvirus Suido 1/genética , Células RAW 264.7 , Perfilación de la Expresión Génica , Fosfotransferasas (Aceptor de Grupo Alcohol)
9.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189711

RESUMEN

Autophagy maintains cellular homeostasis by degrading organelles, proteins, and lipids in lysosomes. Autophagy is involved in the innate and adaptive immune responses to a variety of pathogens. Some viruses can hijack host autophagy to enhance their replication. However, the role of autophagy in porcine reproductive and respiratory syndrome virus (PRRSV) infection is unclear. Here, we show that N-Myc downstream-regulated gene 1 (NDRG1) deficiency induced autophagy, which facilitated PRRSV replication by regulating lipid metabolism. NDRG1 mRNA is expressed ubiquitously in most porcine tissues and most strongly in white adipose tissue. PRRSV infection downregulated the expression of NDRG1 mRNA and protein, while NDRG1 deficiency contributed to PRRSV RNA replication and progeny virus assembly. NDRG1 deficiency reduced the number of intracellular lipid droplets (LDs), but the expression levels of key genes in lipogenesis and lipolysis were not altered. Our results also show that NDRG1 deficiency promoted autophagy and increased the subsequent yields of hydrolyzed free fatty acids (FFAs). The reduced LD numbers, increased FFA levels, and enhanced PRRSV replication were abrogated in the presence of an autophagy inhibitor. Overall, our findings suggest that NDRG1 plays a negative role in PRRSV replication by suppressing autophagy and LD degradation.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-positive-stranded RNA virus, causes acute respiratory distress in piglets and reproductive failure in sows. It has led to tremendous economic losses in the swine industry worldwide since it was first documented in the late 1980s. Vaccination is currently the major strategy used to control the disease. However, conventional vaccines and other strategies do not provide satisfactory or sustainable prevention. Therefore, safe and effective strategies to control PRRSV are urgently required. The significance of our research is that we demonstrate a previously unreported relationship between PRRSV, NDRG1, and lipophagy in the context of viral infection. Furthermore, our data point to a new role for NDRG1 in autophagy and lipid metabolism. Thus, NDRG1 and lipophagy will have significant implications for understanding PRRSV pathogenesis for developing new therapeutics.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación hacia Abajo , Ácidos Grasos no Esterificados/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Animales , Autofagia , Células HEK293 , Humanos , Masculino , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos , Replicación Viral
10.
Biotechnol Lett ; 40(4): 641-648, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29383471

RESUMEN

OBJECTIVE: The purpose of the article is to evaluate the changes in lipid metabolism in bovine mammary-gland epithelial MAC-T cells after PKM2 knockdown. RESULTS: MAC-T cells stably expressing low levels of PKM2 were established with lentivirus-mediated small hairpin RNA. Although the knockdown of PKM2 had no effect on MAC-T cell growth, the reduced expression of PKM2 attenuated the mRNA and protein expression of key enzymes involved in sterol synthesis through the SREBP pathway. CONCLUSIONS: The downregulation of PKM2 significantly influenced lipid synthesis in bovine mammary-gland epithelial MAC-T cells. These findings extend our understanding of the crosstalk between glycolysis and lipid metabolism in bovine mammary-gland epithelial cells.


Asunto(s)
Proteínas Portadoras/genética , Metabolismo de los Lípidos/genética , Glándulas Mamarias Animales/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Hormonas Tiroideas/genética , Animales , Proteínas Portadoras/metabolismo , Bovinos , Células Epiteliales/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Glucólisis/genética , Lípidos/biosíntesis , Proteínas de la Membrana/metabolismo , ARN Mensajero/genética , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Linfocitos T/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
11.
J Gen Virol ; 98(6): 1467-1476, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28631596

RESUMEN

Cholesterol 25-hydroxylase (CH25H) catalyses the production of 25-hydroxycholesterol (25HC) from cholesterol by adding a second hydroxyl group at position 25. The aim of this study was to examine the antiviral effect of CH25H on pseudorabies virus (PRV), a swine pathogen that can cause devastating disease and economic losses worldwide. The results showed that porcine ch25h was induced by either interferon or PRV infection. PRV infection of porcine alveolar macrophages (3D4/21 cells) was attenuated by CH25H overexpression and enhanced by silencing of CH25H. Furthermore, treatment of 3D4/21 cells with 25HC inhibited the growth of PRV in vitro, suggesting that CH25H may restrict PRV replication by 25HC production. We further identified that the anti-PRV role of CH25H and 25HC was subject to their inhibitory effect on PRV attachment and entry. Collectively, these findings demonstrate that CH25H is an intrinsic host restriction factor in PRV infection of porcine alveolar macrophages.


Asunto(s)
Antivirales/metabolismo , Herpesvirus Suido 1/crecimiento & desarrollo , Herpesvirus Suido 1/inmunología , Interacciones Huésped-Patógeno , Hidroxicolesteroles/metabolismo , Esteroide Hidroxilasas/metabolismo , Replicación Viral , Animales , Células Cultivadas , Inmunidad Innata , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Porcinos , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
12.
Virol Sin ; 39(3): 403-413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636706

RESUMEN

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Triptófano-ARNt Ligasa , Replicación Viral , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Animales , Línea Celular , Porcinos , Triptófano-ARNt Ligasa/metabolismo , Triptófano-ARNt Ligasa/genética , Seudorrabia/virología , Seudorrabia/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Interacciones Huésped-Patógeno , Ratones
13.
mBio ; : e0265123, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047681

RESUMEN

IMPORTANCE: Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant economic concern for the global swine industry due to its connection to serious production losses and increased mortality rates. There is currently no specific treatment for PRRSV. Previously, we had uncovered that PRRSV-activated lipophagy to facilitate viral replication. However, the precise mechanism that PRRSV used to trigger autophagy remained unclear. Here, we found that PRRSV GP5 enhanced mitochondrial Ca2+ uptake from ER by promoting ER-mitochondria contact, resulting in mROS release. Elevated mROS induced autophagy, which alleviated NLRP3 inflammasome activation for optimal viral replication. Our study shed light on a novel mechanism revealing how PRRSV exploits mROS to facilitate viral replication.

14.
Autophagy ; 18(8): 1801-1821, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34822318

RESUMEN

Alphaherpesvirus infection results in severe health consequences in a wide range of hosts. USPs are the largest subfamily of deubiquitinating enzymes that play critical roles in immunity and other cellular functions. To investigate the role of USPs in alphaherpesvirus replication, we assessed 13 USP inhibitors for PRV replication. Our data showed that all the tested compounds inhibited PRV replication, with the USP14 inhibitor b-AP15 exhibiting the most dramatic effect. Ablation of USP14 also influenced PRV replication, whereas replenishment of USP14 in USP14 null cells restored viral replication. Although inhibition of USP14 induced the K63-linked ubiquitination of PRV VP16 protein, its degradation was not dependent on the proteasome. USP14 directly bound to ubiquitin chains on VP16 through its UBL domain during the early stage of viral infection. Moreover, USP14 inactivation stimulated EIF2AK3/PERK- and ERN1/IRE1-mediated signaling pathways, which were responsible for VP16 degradation through SQSTM1/p62-mediated selective macroautophagy/autophagy. Ectopic expression of non-ubiquitinated VP16 fully rescued PRV replication. Challenge of mice with b-AP15 activated ER stress and autophagy and inhibited PRV infection in vivo. Our results suggested that USP14 was a potential therapeutic target to treat alphaherpesvirus-induced infectious diseases.Abbreviations ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; ATG5: autophagy related 5; ATG12: autophagy related 12; CCK-8: cell counting kit-8; Co-IP: co-immunoprecipitation; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR associated system 9; DDIT3/CHOP: DNA-damage inducible transcript 3; DNAJB9/ERdj4: DnaJ heat shock protein family (Hsp40) member B9; DUBs: deubiquitinases; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EP0: ubiquitin E3 ligase ICP0; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; FOXO1: forkhead box O1; FRET: Förster resonance energy transfer; HSPA5/BiP: heat shock protein 5; HSV: herpes simplex virus; IE180: transcriptional regulator ICP4; MAP1LC3/LC3: microtube-associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; PRV: pseudorabies virus; PRV gB: PRV glycoprotein B; PRV gE: PRV glycoprotein E; qRT-PCR: quantitative real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: tissue culture infective dose; UB: ubiquitin; UBA: ubiquitin-associated domain; UBL: ubiquitin-like domain; UL9: DNA replication origin-binding helicase; UPR: unfolded protein response; USPs: ubiquitin-specific proteases; VHS: virion host shutoff; VP16: viral protein 16; XBP1: X-box binding protein 1; XBP1s: small XBP1; XBP1(t): XBP1-total.


Asunto(s)
Alphaherpesvirinae , Autofagia , Estrés del Retículo Endoplásmico , Proteína Vmw65 de Virus del Herpes Simple , Ubiquitina Tiolesterasa , Alphaherpesvirinae/patogenicidad , Alphaherpesvirinae/fisiología , Animales , Proliferación Celular , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Macroautofagia , Ratones , Proteína Sequestosoma-1 , Ubiquitina Tiolesterasa/metabolismo
15.
Mol Immunol ; 136: 55-64, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087624

RESUMEN

Pseudorabies virus (PRV) is an enveloped double-stranded DNA virus that is the etiological agent of Aujeszky's disease in pigs. Vaccination is currently available to prevent PRV infection, but there is still an urgent need for new strategies to control this infectious disease. Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction and even transcription. Viral transcription and protein activities are intimately linked to regulation by histone acetyltransferases and HDACs that remodel chromatin and regulate gene expression. We reported here that genetic and pharmacological inhibition of HDAC1 significantly influenced PRV replication. Moreover, we demonstrated that inhibition of HDAC1 induced a DNA damage response and antiviral innate immunity. Mechanistically, the HDAC1 inhibition-induced DNA damage response resulted in the release of double-strand DNA into the cytosol to activate cyclic GMP-AMP synthase and the downstream STING/TBK1/IRF3 innate immune signaling pathway. Our results demonstrate that an HDAC1 inhibitor may be used as a new strategy to prevent Aujeszky's disease in pigs.


Asunto(s)
Herpesvirus Suido 1/efectos de los fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Seudorrabia/tratamiento farmacológico , Células 3T3 , Animales , Línea Celular , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Células HEK293 , Herpesvirus Suido 1/crecimiento & desarrollo , Histona Desacetilasa 1/genética , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Seudorrabia/inmunología , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , Porcinos , Enfermedades de los Porcinos/virología , Replicación Viral/efectos de los fármacos
16.
Front Immunol ; 11: 575818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072119

RESUMEN

Pigs have anatomical and physiological characteristics comparable to those in humans and, therefore, are a favorable model for immune function research. Interferons (IFNs) and inflammasomes have essential roles in the innate immune system. Here, we report that G10, a human-specific agonist of stimulator of interferon genes (STING), activates both type I IFN and the canonical NLRP3 inflammasome in a STING-dependent manner in porcine cells. Without a priming signal, G10 alone transcriptionally stimulated Sp1-dependent p65 expression, thus triggering activation of the nuclear factor-κB (NF-κB) signaling pathway and thereby priming inflammasome activation. G10 was also found to induce potassium efflux- and NLRP3/ASC/Caspase-1-dependent secretion of IL-1ß and IL-18. Pharmacological and genetic inhibition of NLRP3 inflammasomes increased G10-induced type I IFN expression, thereby preventing virus infection, suggesting negative regulation of the NLRP3 inflammasome in the IFN response in the context of STING-mediated innate immune activation. Overall, our findings reveal a new mechanism through which G10 activates the NLRP3 inflammasome in porcine cells and provide new insights into STING-mediated innate immunity in pigs compared with humans.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Inflamasomas/agonistas , Interferón Tipo I/metabolismo , Proteínas de la Membrana/agonistas , Proteína con Dominio Pirina 3 de la Familia NLR/agonistas , Tiazinas/farmacología , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interferón Tipo I/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Sus scrofa , Células THP-1 , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Células Vero
17.
Redox Biol ; 36: 101601, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32535542

RESUMEN

Emerging viral pathogens cause substantial morbidity and pose a severe threat to health worldwide. However, a universal antiviral strategy for producing safe and immunogenic inactivated vaccines is lacking. Here, we report an antiviral strategy using the novel singlet oxygen (1O2)-generating agent LJ002 to inactivate enveloped viruses and provide effective protection against viral infection. Our results demonstrated that LJ002 efficiently generated 1O2 in solution and living cells. Nevertheless, LJ002 exhibited no signs of acute toxicity in vitro or in vivo. The 1O2 produced by LJ002 oxidized lipids in the viral envelope and consequently destroyed the viral membrane structure, thus inhibiting the viral and cell membrane fusion necessary for infection. Moreover, the 1O2-based inactivated pseudorabies virus (PRV) vaccine had no effect on the content of the viral surface proteins. Immunization of mice with LJ002-inactiviated PRV vaccine harboring comparable antigen induced more neutralizing antibody responses and efficient protection against PRV infection than conventional formalin-inactivated vaccine. Additionally, LJ002 inactivated a broad spectrum of enveloped viruses. Together, our results may provide a new paradigm of using broad-spectrum, highly effective inactivants functioning through 1O2-mediated lipid oxidation for developing antivirals that target the viral membrane fusion process.


Asunto(s)
Oxígeno Singlete , Virosis , Animales , Antivirales/farmacología , Ratones , Vacunas de Productos Inactivados , Internalización del Virus
18.
Int J Biol Macromol ; 146: 497-507, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31923489

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a predominant DNA sensor inducing the activation of the innate immune responses that produce proinflammatory cytokines and type I interferons, which has been well-investigated in mammals. However, chicken cGAS (chcGAS), which participates in avian innate immunity, has not been well-investigated. Here, we cloned the complete open reading frame sequence of chcGAS. Multiple sequence alignment and phylogenetic analysis revealed that chcGAS was homologous to mammalian cGAS. The chcGAS mRNA was highly expressed in the bone marrow and ileum. The subcellular localization of chcGAS was mainly in the cytoplasm, and partial co-localization was observed in the endoplasmic reticulum. Through overexpression and RNA interference, we demonstrated that chcGAS responded to exogenous dsDNA, HS-DNA, and poly(dA:dT), and to self dsDNA from the DNA damage response, thereby triggering the activation of STING/TBK1/IRF7-mediated innate immunity in both chicken embryonic fibroblasts and chicken liver cancer cells. Furthermore, downregulation of chcGAS enhanced the infection of fowl adenovirus serotype 4 in LMH cells. Our results demonstrated that chcGAS was an important cytosolic DNA sensor activating innate immune responses and may shed light on a strategy for preventing infectious diseases in the poultry industry.


Asunto(s)
Adenoviridae/inmunología , Pollos/inmunología , Pollos/virología , Citosol/metabolismo , ADN/metabolismo , Inmunidad Innata , Nucleótidos Cíclicos/metabolismo , Serogrupo , Secuencia de Aminoácidos , Animales , Línea Celular , Daño del ADN , Etopósido/farmacología , Perfilación de la Expresión Génica , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Interleucina-1beta/metabolismo , Nucleótidos Cíclicos/química , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/metabolismo
19.
Int J Biol Macromol ; 151: 1181-1193, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31743714

RESUMEN

Interferon-inducible transmembrane proteins (IFITMs) restrict infection by several viruses, such as influenza A virus, West Nile virus and dengue virus. It has not been determined whether porcine IFITMs (pIFITMs) inhibit infection by pseudorabies virus (PRV), an enveloped, double-stranded DNA virus, which is the etiological agent of Aujeszky's disease in pigs. Here, we report that PRV infection elicited pIFITM1 expression in PK15 porcine kidney epithelial cells and 3D4/21 alveolar macrophages. pIFITM2 and pIFITM3 expression was only elevated in PK15 cells during PRV infection. Depletion of pIFITM1 using RNA interference, either in PK15 or in 3D4/21 cells, enhanced PRV infection while overexpression of pIFITM1 had the opposite effect. Knockdown of pIFITM2 and pIFITM3 did not influence PRV infection, suggesting that pIFITM2 and pIFITM3 are independent of PRV infection. PRV-induced pIFITM1 expression was dependent on the cGAS/STING/TBK1/IRF3 innate immune pathway and interferon-alpha receptor-1, suggesting that pIFITM1 is up-regulated by the type I interferon signaling pathway. The anti-PRV role of pIFITM1 was inhibited upon PRV entry. Our data demonstrate that pIFITM1 is a host restriction factor that inhibits PRV entry that may shed light on a strategy for prevention of PRV infection.


Asunto(s)
Antígenos de Diferenciación/farmacología , Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Seudorrabia/genética , Seudorrabia/metabolismo , Seudorrabia/virología , Porcinos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
20.
Mol Immunol ; 95: 56-63, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29407577

RESUMEN

In a previous study, we demonstrated that porcine cyclic GMP-AMP (cGAMP) synthase (cGAS) catalyzes cGAMP production and is an important DNA sensor for the pseudorabies virus (PRV)-induced activation of interferon ß (IFN-ß). Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) has recently been identified as the hydrolase of cGAMP in rodents, but its role in porcine cells is not clear. Our recent study demonstrated that porcine ENPP1 is responsible for the homeostasis of cGAMP and is critical for PRV infection. Porcine ENPP1 mRNA is predominantly expressed in muscle. PRV infection was enhanced by ENPP1 overexpression and attenuated by silencing of ENPP1. During PRV infection, the activation of IFN-ß and NF-κB was reduced in ENPP1 overexpressed cells and promoted in ENPP1 knockdown cells. Investigation of the molecular mechanisms of ENPP1 during PRV infection showed that ENPP1 hydrolyzed cGAMP in PRV-infected or cGAMP-transfected cells and inhibited IRF3 phosphorylation, reducing IFN-ß secretion. These results, combined with those for porcine cGAS, demonstrate that ENPP1 acts coordinately with cGAS to maintain the reservoir of cGAMP and participates in PRV infection.


Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Seudorrabia/metabolismo , Pirofosfatasas/fisiología , Animales , Células Cultivadas , Células HEK293 , Herpesvirus Suido 1/fisiología , Homeostasis , Humanos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA