Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stat Appl Genet Mol Biol ; 23(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563699

RESUMEN

Simulation frameworks are useful to stress-test predictive models when data is scarce, or to assert model sensitivity to specific data distributions. Such frameworks often need to recapitulate several layers of data complexity, including emergent properties that arise implicitly from the interaction between simulation components. Antibody-antigen binding is a complex mechanism by which an antibody sequence wraps itself around an antigen with high affinity. In this study, we use a synthetic simulation framework for antibody-antigen folding and binding on a 3D lattice that include full details on the spatial conformation of both molecules. We investigate how emergent properties arise in this framework, in particular the physical proximity of amino acids, their presence on the binding interface, or the binding status of a sequence, and relate that to the individual and pairwise contributions of amino acids in statistical models for binding prediction. We show that weights learnt from a simple logistic regression model align with some but not all features of amino acids involved in the binding, and that predictive sequence binding patterns can be enriched. In particular, main effects correlated with the capacity of a sequence to bind any antigen, while statistical interactions were related to sequence specificity.


Asunto(s)
Anticuerpos , Antifibrinolíticos , Estudios de Factibilidad , Vacunas Sintéticas , Aminoácidos
2.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37396030

RESUMEN

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA