Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38929479

RESUMEN

Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.


Asunto(s)
Inflamación , Interleucina-10 , Hígado , Obesidad Mórbida , Humanos , Interleucina-10/sangre , Interleucina-10/análisis , Obesidad Mórbida/complicaciones , Obesidad Mórbida/sangre , Femenino , Masculino , Adulto , Persona de Mediana Edad , Hígado/metabolismo , Hígado/patología , Estudios Prospectivos , Inflamación/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/complicaciones
2.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668745

RESUMEN

Emotion recognition is benefitting from the latest research into physiological monitoring and wireless communications, among other remarkable achievements. These technologies can indeed provide solutions to protect vulnerable people in scenarios such as personal assaults, the abuse of children or the elderly, gender violence or sexual aggression. Cyberphysical systems using smart sensors, artificial intelligence and wearable and inconspicuous devices can serve as bodyguards to detect these risky situations (through fear-related emotion detection) and automatically trigger a protection protocol. As expected, these systems should be trained and customized for each user to ensure the best possible performance, which undoubtedly requires a gender perspective. This paper presents a specialized fear recognition system for women based on a reduced set of physiological signals. The architecture proposed is characterized by the usage of three physiological sensors, lightweight binary classification and the conjunction of linear (temporal and frequency) and non-linear features. Moreover, a binary fear mapping strategy between dimensional and discrete emotional information based on emotional self-report data is implemented to avoid emotional bias. The architecture is evaluated using a public multi-modal physiological dataset with two approaches (subject-dependent and subject-independent models) focusing on the female participants. As a result, the proposal outperforms the state-of-the-art in fear recognition, achieving a recognition rate of up to 96.33% for the subject-dependent model.


Asunto(s)
Inteligencia Artificial , Emociones , Miedo , Reconocimiento en Psicología , Anciano , Niño , Femenino , Humanos , Monitoreo Fisiológico
3.
Soft Matter ; 15(27): 5495-5510, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31241633

RESUMEN

Recent studies on quasi-two-dimensional (2D) fluid flows in Hele-Shaw cells revealed the emergence of the so-called elastic fingering phenomenon. This pattern-forming process takes place when a reaction occurs at the fluid-fluid interface, transforming it into an elastic gel-like boundary. The interplay of viscous and elastic forces leads to the development of pattern morphologies significantly different from those seen in the conventional, purely hydrodynamic viscous fingering problem. In this work, we investigate the occurrence of elastic fingering for radial fluid displacements in a 3D uniform porous medium. A perturbative third-order mode-coupling approach is employed to examine how the combined action of viscous and elastic effects influences the linear stability of the interface, and the weakly nonlinear pattern formation in such a 3D environment. In addition, a variational method is used to determine how to minimize the growth of interfacial perturbation amplitudes via a time-dependent injection rate scheme.

4.
Soft Matter ; 10(38): 7459-67, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25007292

RESUMEN

We study the pattern formation dynamics related to the displacement of a viscous wetting fluid by a less viscous nonwetting fluid in a lifting Hele-Shaw cell. A perturbative weakly nonlinear analysis of the problem is presented. We focus on examining how wetting effects influence the morphology of the emerging interfacial patterns at the early nonlinear regime. Our analytical results indicate that wettability has a significant impact on the resulting nonlinear patterns. It restrains finger length variability while inducing the development of structures presenting short, blunt penetrating fingers of the nonwetting fluid, alternated by short, sharp fingers of the wetting fluid. The basic mode-coupling mechanisms leading to such behavior are discussed.

5.
Phys Rev E ; 109(1-2): 015104, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366430

RESUMEN

The lifting Hele-Shaw cell flow commonly involves the stretching of a viscous oil droplet surrounded by air, in the confined space between two parallel plates. As the upper plate is lifted, viscous fingering instabilities emerge at the air-oil interface. Such an interfacial instability phenomenon is widely observed in numerous technological and industrial applications, being quite difficult to control. Motivated by the recent interest in controlling and stabilizing the Saffman-Taylor instability in lifting Hele-Shaw flows, we propose an alternative way to restrain the development of interfacial disturbances in this gap-variable system. Our method modifies the traditional plate-lifting flow arrangement by introducing a finite fluid annulus layer encircling the central oil droplet, and separating it from the air. A second-order, perturbative mode-coupling approach is employed to analyze morphological and stability behaviors in this three-fluid, two-interface, doubly connected system. Our findings indicate that the intermediate fluid ring can significantly stabilize the interface of the central oil droplet. We show that the effectiveness of this stabilization protocol relies on the appropriate choice of the ring's viscosity and thickness. Furthermore, we calculate the adhesion force required to detach the plates, and find that it does not change significantly with the addition of the fluid envelope as long as it is sufficiently thin. Finally, we detect no distinction in the adhesion force computed for stable or unstable annular interfaces, indicating that the presence of fingering at the ring's boundaries has a negligible effect on the adhesion force.

6.
Phys Rev E ; 108(2-2): 025104, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723719

RESUMEN

The lifting Hele-Shaw cell setup is a popular modification of the classic, fixed-gap, radial viscous fingering problem. In the lifting cell configuration, the upper cell plate is lifted such that a more viscous inner fluid is invaded by an inward-moving outer fluid. As the fluid-fluid interface contracts, one observes the rising of distinctive patterns in which penetrating fingers having rounded tips compete among themselves, reaching different lengths. Despite the scholarly and practical relevance of this confined lifting flow problem, the impact of interfacial rheology effects on its pattern-forming dynamics has been overlooked. Authors of recent studies on the traditional injection-induced radial Hele-Shaw flow and its centrifugally driven variant have shown that, if the fluid-fluid interface is structured (i.e., laden with surfactants, particles, proteins, or other surface-active entities), surface rheological stresses start to act, influencing the development of the viscous fingering patterns. In this paper, we investigate how interfacial rheology affects the stability as well as the shape of the emerging fingered structures in lifting Hele-Shaw flows, at linear and early nonlinear dynamic stages. We tackle the problem by utilizing the Boussinesq-Scriven model to describe the interface and by employing a perturbative mode-coupling scheme. Our linear stability results show that interfacial rheology effects destabilize the interface. Furthermore, our second-order findings indicate that interfacial rheology significantly alters intrinsically nonlinear morphological features of the shrinking interface, inducing the formation of narrow sharp-tip penetrating fingers and favoring enhanced competition among them.

7.
Phys Rev E ; 107(1-2): 015103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797856

RESUMEN

Fluid-fluid interfaces, laden with polymers, surfactants, lipid bilayers, proteins, solid particles, or other surface-active agents, often exhibit a rheologically complex response to deformations. Despite its academic and practical relevance to fluid dynamics and various other fields of research, the role of interfacial rheology in viscous fingering remains fairly underexplored. A noteworthy exception is the work by Li and Manikantan [Phys. Rev. Fluids 6, 074001 (2021)2469-990X10.1103/PhysRevFluids.6.074001], who used linear stability analysis to show that surface rheological stresses act to stabilize the development of radial viscous fingering at the linear regime. In this paper, we perform a perturbative, second-order mode-coupling analysis of the system and investigate the influence of interfacial rheology on the morphology of the fingering structures at early nonlinear stages of the dynamics. In particular, we focus on understanding how interfacial rheology impacts the emblematic finger tip-widening and finger tip-splitting phenomena that take place in radial viscous fingering in Hele-Shaw cells. We describe the viscous Newtonian fluid-fluid interface by using a Boussinesq-Scriven model, and derive a generalized Young-Laplace pressure jump condition at the fluid-fluid interface. In this framing, we go beyond the purely linear description and use Darcy's law to obtain a perturbative mode-coupling differential equation which describes the time evolution of the perturbation amplitudes, accurate to second order. Our early nonlinear mode-coupling results indicate that regardless of their stabilizing action at the linear regime, interfacial rheology effects favor finger tip widening, leading to the occurrence of enhanced finger tip-splitting events.

8.
Phys Rev E ; 107(2-2): 025105, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932566

RESUMEN

In rotating Hele-Shaw flows, centrifugal force acts, and the interface separating two viscous fluids becomes unstable, driven by the density difference between them. Complex interfacial structures develop where fingers of various shapes and sizes grow, and compete. These patterns have been well studied over the last few decades, analytically, numerically, and experimentally. However, one feature of the pattern-forming dynamics of much current interest has been underappreciated: the role of surface rheological stresses in the deformation, and time evolution of the fluid-fluid interface. In this paper, we employ a perturbative, second-order mode-coupling analysis to investigate how interfacial rheology effects influence centrifugally driven fingering phenomena, beyond the scope of linear stability theory. Describing the viscous Newtonian interface by using a Boussinesq-Scriven model, we derive a nonlinear differential equation that governs the early linear, and nonlinear time evolution of the system. In this framing, the most prevalent dynamical features of the patterns are described in terms of two dimensionless parameters: the viscosity contrast A (dimensionless viscosity difference between the fluids), and the Boussinesq number Bq which involves a ratio between interfacial and bulk viscosities. At the linear level, our results show that for a given A, surface rheological stresses dictated by Bq have a stabilizing role. Nevertheless, our weakly nonlinear findings reveal a more elaborate scenario in which the shape of the fingers, and their finger competition behavior result from the coupled influence of A and Bq. It is found that, although finger competition phenomena depend on the specific values of A and Bq, the fingers tend to widen as Bq is increased, regardless of the value of A.

9.
Phys Rev Lett ; 109(14): 144502, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23083248

RESUMEN

Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping rate in order to restrain the growth of interfacial amplitudes. We use an analytical variational scheme to look for the precise functional form of such an optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this particularly simple, but nontrivial, pattern controlling process.

10.
Phys Rev E ; 106(2-2): 025105, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36109920

RESUMEN

We investigate the behavior of a magnetorheological (MR) fluid annulus, bounded by a nonmagnetic fluid and confined in a Hele-Shaw cell, under the simultaneous effect of in-plane, external radial and azimuthal magnetic fields. A second-order mode-coupling theory is used to study the early nonlinear stage of the pattern-forming dynamics. We examine changes in the morphology of the MR fluid annular structure as a function of its magnetic-field-tunable rheological properties, as well as the combined magnetic field's intensities, and thickness of the ring. Our weakly nonlinear perturbative results show that, depending on the system control parameters, the MR fluid annulus adopts various stationary shapes. These equilibrium annular structures present slightly bent, asymmetric fingered protrusions which may emerge on the inner, outer, or even on both boundaries of the magnetic fluid ring. On top of these morphological changes, we find that the resulting permanent shape patterns rotate with a well defined angular velocity. We focus on analyzing how the overall shape of the fingered patterns, in particular their sharpness and asymmetric form, as well as the number of resulting fingers are impacted by the magnetic-field-dependent yield stress of the MR fluid annulus. The influence of the magnetically controlled rheological properties of the MR fluid on the angular velocity of the rotating annulus is also scrutinized.

11.
Phys Rev E ; 105(4-2): 045106, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590587

RESUMEN

We study the dynamics and pattern formation of a ferrofluid annulus enveloped by two nonmagnetic fluids in a Hele-Shaw cell, subjected to an in-plane crossed magnetic field configuration involving the combination of radial and azimuthal magnetic fields. A perturbative, second-order mode-coupling analysis is employed to investigate how the ferrofluid annulus responds to variations in the relative strength of the radial and azimuthal magnetic field components, as well as in the thickness of magnetic fluid ring. By tuning the magnetic field components and the annulus' thickness, we have found the development of several stationary annular shapes, presenting polygon-shaped structures typically having skewed, peaked fingers. Such fingered structures may vary their skewness, sharpness, and number and arise on the inner, outer, or even both boundaries of the annulus. In addition to controlling the morphologies of the ferrofluid annuli, the external field can be used to put the annulus into a rotational motion, with an angular velocity having prescribed magnitude, and direction. Our second-order theory is utilized to obtain a correction to the linear stability analysis prediction of such angular velocity, usually resulting in a decreased weakly nonlinear value as compared with the magnitude predicted by purely linear theory. These theoretical results suggest the use of magnetic-field-controlled ferrofluid annuli in Hele-Shaw cells as a potential laboratory for microscale applications related to the manipulation of shape-programmable magnetic fluid objects and tunable fluidic-mixing devices in confined environments.

12.
J Clin Virol Plus ; 2(4): 100104, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36034515

RESUMEN

The SARS CoV-2 D614G variant circulated in Cuba in 2020. New viral variants were detected after the opening of the border in November 2020. We show the results of the genomic surveillance in Cuba from December 28, 2020, to September 28, 2021 and their relationship to the epidemiological situation in the country. A total of 1,406 nasopharyngeal exudates from COVID-19 patients were processed for RNA extraction and the 1836 bp fragment of the spike gene was amplified and sequenced. The mutations present were determined using the GISAID database. Prevalence ratios were estimated by fitting Poisson univariate and multivariate regression models to investigate associations between SARS-CoV-2 variant group (VOC, non-VOC) and disease outcome. Seventeen genetic variants were detected including VOC Alpha, Beta, Gamma and Delta, one variant of interest (VOI) (Lambda) and two previous VOI (A.2.5.1 and Zeta/P.2). Beta (34.77%), Delta (24.89%) and D614G (19%) variants were the most frequently detected. By June, Delta increased in frequency, displacing Beta. Disease severity increased significantly with age and VOC (PR =1.98, IC 95%: 1.33-3.05, p <0.05). Genomic surveillance allowed us to identify the upsurge of novel variants. Coinciding with the higher epidemic period, multiple variants were co-circulating. Although we cannot rule out that failure in the transmission containment measures occurred, the increase in the number of cases associated with the circulation of several variants, particularly the Beta and Delta variants is highly suggestive. A greater association of Beta variant with clinical severity and Delta variant with a greater transmissibility was observed.

13.
Phys Rev E ; 103(6-1): 063102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271760

RESUMEN

We investigate the evolution of the interface separating two Newtonian fluids of different viscosities in two-dimensional Stokes flow driven by suction or injection. A second-order, mode-coupling theory is used to explore key morphological aspects of the emerging interfacial patterns in the stage of the flow that bridges the purely linear and fully nonlinear regimes. In the linear regime, our analysis reveals that an injection-driven expanding interface is stable, while a contracting motion driven by suction is unstable. Moreover, we find that the linear growth rate associated with this suction-driven instability is independent of the viscosity contrast between the fluids. However, second-order results tell a different story, and show that the viscosity contrast is crucial in determining the morphology of the interface. Our theoretical description is applicable to the entire range of viscosity contrasts, and provides insights on the formation of near-cusp pattern-forming structures. Reproduction of fully nonlinear, n-fold symmetric near-cuspidal shapes previously obtained through conformal mapping techniques substantiates the validity of our mode-coupling approach.

14.
Phys Rev E ; 104(4-2): 045106, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34781440

RESUMEN

Viscous fingering in radial Hele-Shaw cells is markedly characterized by the occurrence of fingertip splitting, where growing fingered structures bifurcate at their tips, via a tip-doubling process. A much less studied pattern-forming phenomenon, which is also detected in experiments, is the development of fingertip tripling, where a finger divides into three. We investigate the problem theoretically, and employ a third-order perturbative mode-coupling scheme seeking to detect the onset of tip-tripling instabilities. Contrary to most existing theoretical studies of the viscous fingering instability, our theoretical description accounts for the effects of viscous normal stresses at the fluid-fluid interface. We show that accounting for such stresses allows one to capture the emergence of tip-tripling events at weakly nonlinear stages of the flow. Sensitivity of fingertip-tripling events to changes in the capillary number and in the viscosity contrast is also examined.

15.
Phys Rev E ; 104(6-2): 065103, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030922

RESUMEN

We investigate the flow of a viscous ferrofluid annulus surrounded by two nonmagnetic fluids in a Hele-Shaw cell when subjected to an external radial magnetic field. The interfacial pattern formation dynamics of the system is determined by the interplay of magnetic and surface tension forces acting on the inner and outer boundaries of the annulus, favoring the coupling of the disjoint interfaces. Mode-coupling analysis is employed to examine both linear and weakly nonlinear stages of the flow. Linear stability analysis indicates that the trailing and leading annular boundaries are coupled already at the linear regime, revealing that perturbations arising in the outer interface may induce the emergence of deformed structures in the inner boundary. Moreover, second-order weakly nonlinear analysis is utilized to identify key nonlinear morphological features of the ferrofluid annulus. Our theoretical results show that linear, n-fold symmetric annular patterns having rounded edges are replaced by nonlinear polygonal-like shapes, presenting fairly sharp fingers. It is found that, as opposed to the linear patterns, the nonlinear peaky structures reach a stationary state, characterized by a growth saturation process induced by nonlinear effects. Furthermore, the response of the ferrofluid ring to changes in the thickness of the annulus, in the relative strength of magnetic and surface tensions forces, as well as in the magnetic susceptibility of the ferrofluid material, are also discussed.

16.
Phys Rev E ; 104(6-2): 065113, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030845

RESUMEN

We analyze the morphology and dynamic behavior of the interface separating a ferrofluid and a nonmagnetic fluid in a Hele-Shaw cell, when crossed radial and azimuthal magnetic fields are applied. In addition to inducing the formation of a variety of eye-catching, complex interfacial structures, the action of the crossed fields makes the deformed ferrofluid droplet to rotate. Numerical simulations and perturbative mode-coupling theory are employed to look into early linear, intermediate weakly nonlinear, and fully nonlinear dynamic regimes of the pattern-forming process. We investigate how the system responds to variations in the viscosity difference between the fluids, the magnetic susceptibility of the ferrofluid, the effects of surface tension, and in the relative strength between radial and azimuthal applied magnetic fields. The role played by random perturbations at the initial conditions in determining the ultimate shape and dynamic stability of the spinning ferrofluid patterns is also studied.

17.
Phys Rev E ; 102(6-1): 063102, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466051

RESUMEN

During the past few years, researchers have been proposing time-dependent injection strategies for stabilizing or manipulating the development of viscous fingering instabilities in radial Hele-Shaw cells. Most of these studies investigate the displacement of Newtonian fluids and are entirely based on linear stability analyses. In this work, linear stability theory and variational calculus are used to determine closed-form expressions for the proper time-dependent injection rates Q(t) required to either minimize the interface disturbances or to control the number of emerging fingers. However, this is done by considering that the displacing fluid is non-Newtonian and has a time-varying viscosity. Moreover, a perturbative third-order mode-coupling approach is employed to examine the validity and effectiveness of the controlling protocols dictated by these Q(t) beyond the linear regime and at the onset of nonlinearities.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066312, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19658599

RESUMEN

We revisit the radial viscous fingering problem in a Hele-Shaw cell, and consider the action of viscous stresses originated from velocity gradients normal to the fluid-fluid interface. The evolution of the interface during linear and weakly nonlinear stages is described analytically through a mode-coupling approach. We find that the introduction of normal stresses influences the stability and the ultimate morphology of the emerging patterns. Although at early stages normal stresses tend to stabilize the interface, they act to favor the development of tip-splitting phenomena at the weakly nonlinear regime. We have also verified that finger competition events are only significantly affected by normal stresses for circumstances involving the development of a large number of interfacial fingers.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 046303, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19518329

RESUMEN

Denser and highly magnetized ferrofluids exhibit several non-Newtonian behaviors attributed to the formation of magnetic particle chains. We investigate the rheological and adhesive properties during tensile deformation of a confined chain-forming ferrofluid subjected to a radial magnetic field. Both the magnetoviscous contribution to the viscosity and the adhesive force are derived analytically. The response of the system to changes in the length of the chains is examined under zero and nonzero shear circumstances. Our results indicate that the existence of chains has a significant impact on the adhesive strength as well as on the viscosity of the ferrofluid, allowing it to display both shear-thinning and shear-thickening regimes. These findings open up the possibility of monitoring complex rheological responses of such fluids with the assistance of applied magnetic fields, allowing a more accurate assessment of their adhesive properties.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 2): 026303, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19792245

RESUMEN

We consider flow in a Hele-Shaw cell for which the upper plate moves up and down, making the fluid-fluid interface be driven periodically. To study such a flow we employ a mode-coupling approach, which allows the analytical assessment of important aspects about the stability and morphology of the evolving interface. At the linear level, it is shown that both the amplitude and the frequency of the drive have a significant role in determining the ultimate number of fingers formed. The influence of these factors on the mechanisms of finger competition and finger tip behavior at the onset of nonlinear effects is also studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA