Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Purinergic Signal ; 17(1): 79-84, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33025428

RESUMEN

Development of science needs the cooperation of many creative brains. Sometimes, ideas on a specific area get suddenly exhausted and then it is the time for a privileged mind to think in a different way and reach the turning point to introduce a new paradigm. This happened to Geoffrey Burnstock, a heterodox thinker and nonconformist scientist that has been the paladin of purinergic signalling since 1972, opening neuroscience to the understanding of organs and tissues functioning and development of a new pharmacology. This review summarizes the contribution of our group to the understanding of the role of the diadenosine polyphosphates, ApnA, as signalling molecules, describing their tissue and organ distribution, their transport and storage in secretory vesicles and their release and interaction with purinergic receptors. We also have to acknowledge the friendly and kindly support of Professor Burnstock that showed a great interest in the field from our initial findings and actively stimulated our efforts to establish the extracellular roles and biological significance of these dinucleotides.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Receptores Purinérgicos/metabolismo , Vesículas Secretoras/metabolismo , Sinapsis/metabolismo , Animales , Humanos
2.
Int J Mol Sci ; 22(2)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435130

RESUMEN

Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young's modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young's modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Astrocitos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2/metabolismo , Tionucleótidos/metabolismo , Uridina Trifosfato/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Astrocitos/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica , Transducción de Señal , Tionucleótidos/farmacología , Uridina Trifosfato/farmacología
3.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018603

RESUMEN

Dual-specificity protein phosphatases comprise a protein phosphatase subfamily with selectivity towards mitogen-activated protein (MAP) kinases, also named MKPs, or mitogen-activated protein kinase (MAPK) phosphatases. As powerful regulators of the intensity and duration of MAPK signaling, a relevant role is envisioned for dual-specificity protein phosphatases (DUSPs) in the regulation of biological processes in the nervous system, such as differentiation, synaptic plasticity, and survival. Important neural mediators include nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) that contribute to DUSP transcriptional induction and post-translational mechanisms of DUSP protein stabilization to maintain neuronal survival and differentiation. Potent DUSP gene inducers also include cannabinoids, which preserve DUSP activity in inflammatory conditions. Additionally, nucleotides activating P2X7 and P2Y13 nucleotide receptors behave as novel players in the regulation of DUSP function. They increase cell survival in stressful conditions, regulating DUSP protein turnover and inducing DUSP gene expression. In general terms, in the context of neural cells exposed to damaging conditions, the recovery of DUSP activity is neuroprotective and counteracts pro-apoptotic over-activation of p38 and JNK. In addition, remarkable changes in DUSP function take place during the onset of neuropathologies. The restoration of proper DUSP levels and recovery of MAPK homeostasis underlie the therapeutic effect, indicating that DUSPs can be relevant targets for brain diseases.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Encefalopatías/metabolismo , Encefalopatías/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Factores de Crecimiento Nervioso/metabolismo , Neurogénesis , Neuroglía/citología , Neuroglía/patología , Neuronas/citología , Neuronas/patología , Estrés Oxidativo , Dolor/metabolismo , Dolor/patología
4.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609840

RESUMEN

We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve⁻chromaffin cell junction. Likewise, adrenomedullary chromaffin cells displayed enlarged acetylcholine-evoked currents with greater sensitivity to α-conotoxin RgIA, a selective blocker of α9 subunit-containing nicotinic acetylcholine receptors, as well as increased exocytosis triggered by voltage-activated Ca2+ entry. Altogether, these adaptations are expected to facilitate catecholamine output into the bloodstream. Last, but most intriguing, functional and immunohistochemical data indicate that P2X3 and P2X7 purinergic receptors and transient receptor potential vanilloid-1 (TRPV1) channels are overexpressed in chromaffin cells from neuropathic animals. These latter observations are reminiscent of molecular changes characteristic of peripheral sensitization of nociceptors following the lesion of a peripheral nerve, and suggest that similar phenomena can occur in other tissues, potentially contributing to behavioral manifestations of neuropathic pain.


Asunto(s)
Neuralgia/patología , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Canales Catiónicos TRPV/metabolismo , Acetilcolina/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Médula Suprarrenal/metabolismo , Médula Suprarrenal/patología , Animales , Capsaicina/farmacología , Catecolaminas/metabolismo , Células Cromafines/citología , Células Cromafines/efectos de los fármacos , Células Cromafines/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados/efectos de los fármacos , Exocitosis/efectos de los fármacos , Ganglios Espinales/patología , Ganglios Espinales/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuralgia/metabolismo , Neuronas/patología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Canales Catiónicos TRPV/genética
5.
Hum Mol Genet ; 25(19): 4143-4156, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466191

RESUMEN

Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP.


Asunto(s)
Fosfatasa Alcalina/genética , Enfermedades Óseas Metabólicas/genética , Hipofosfatasia/genética , Receptores Purinérgicos P2X7/genética , Convulsiones/genética , Adenosina Trifosfato/administración & dosificación , Fosfatasa Alcalina/antagonistas & inhibidores , Animales , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/fisiopatología , Calcinosis/genética , Calcinosis/metabolismo , Calcinosis/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipofosfatasia/tratamiento farmacológico , Hipofosfatasia/metabolismo , Hipofosfatasia/fisiopatología , Ratones , Ratones Noqueados , Mutación , Receptores Purinérgicos P2X7/biosíntesis , Convulsiones/metabolismo , Convulsiones/fisiopatología , Vitamina B 6/administración & dosificación
6.
Purinergic Signal ; 14(3): 259-270, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29948577

RESUMEN

The pathogenesis of glaucoma involves numerous intracellular mechanisms including the purinergic system contribution. Furthermore, the presence and release of nucleotides and dinucleotides during the glaucomatous damage and the maintenance of degradation machinery through ecto-nucleotidase activity are participating in the modulation of the suitable extracellular complex balance. The aim of this study was to investigate the levels of diadenosine tetraphosphate (Ap4A) and the pattern of ecto-nucleotidase activity expression in glaucomatous retinas during the progress the pathology. Ap4A levels were analyzed by HPLC in glaucomatous retinas from the DBA/2J mice at 3, 9, 15, and 23 months of age. For that, retinas were dissected as flattened whole-mounts and stimulated in Ringer buffer with or without 59 mM KCl. NPP1 expression was analyzed by RT-PCR and western blot and its distribution was assessed by immunohistochemistry studies examined under confocal microscopy. Glaucomatous mice exhibited Ap4A values, which changed in stimulated retinas as long as the pathology progressed varying from 0.73 ± 0.04 (3 months) to 0.170 ± 0.05 pmol/mg retina (23 months). Concomitantly, NPP1 expression was significantly increased (82.15%) in the DBA/2J mice at 15 months. Furthermore, immunohistochemical studies showed that NPP1 labeling was stronger in OPL and IPL labeling tangentially in the vitreal part of the retina and was upregulated at 15 months of age. Our findings demonstrate that Ap4A decreased levels may be related with exacerbated activity of NPP1 protein in glaucomatous degeneration and in this way contributing to elucidate different mechanisms involved in retinal impairment in glaucomatous degeneration.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Glaucoma/fisiopatología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Retina/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
7.
Epilepsia ; 58(9): 1603-1614, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28733972

RESUMEN

OBJECTIVE: ATP is released into the extracellular space during pathologic processes including increased neuronal firing. Once released, ATP acts on P2 receptors including ionotropic P2X and metabotropic P2Y receptors, resulting in changes to glial function and neuronal network excitability. Evidence suggests an involvement of P2Y receptors in the pathogenesis of epilepsy, but there has been no systematic effort to characterize the expression and function of the P2Y receptor family during seizures and in experimental and human epilepsy. METHODS: Status epilepticus was induced using either intra-amygdala kainic acid or pilocarpine to characterize the acute- and long-term changes in hippocampal P2Y expression. P2Y expression was also investigated in brain tissue from patients with temporal lobe epilepsy. Finally, we analyzed the effects of two specific P2Y agonists, ADP and UTP, on seizure severity and seizure-induced cell death. RESULTS: Both intra-amygdala kainic acid and pilocarpine-induced status epilepticus increased the transcription of the uracil-sensitive P2Y receptors P2ry2 , P2ry4 , and P2ry6 and decreased the transcription of the adenine-sensitive P2Y receptors P2ry1 , P2ry12 , P2ry13 . Protein levels of P2Y1 , P2Y2 , P2Y4 , and P2Y6 were increased after status epilepticus, whereas P2Y12 expression was decreased. In the chronic phase, P2ry1 , P2ry2 , and P2ry6 transcription and P2Y1 , P2Y2 , and P2Y12 protein levels were increased with no changes for the other P2Y receptors. In hippocampal samples from patients with temporal lobe epilepsy, P2Y1 and P2Y2 protein expression was increased, whereas P2Y13 levels were lower. Demonstrating a functional contribution of P2Y receptors to seizures, central injection of ADP exacerbated seizure severity, whereas treatment with UTP decreased seizure severity during status epilepticus in mice. SIGNIFICANCE: The present study is the first to establish the specific hippocampal expression profile and function of the P2Y receptor family after experimental status epilepticus and in human temporal lobe epilepsy and offers potential new targets for seizure control and disease modification.


Asunto(s)
Epilepsia Refractaria/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Convulsiones/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia del Lóbulo Temporal/metabolismo , Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Estado Epiléptico/tratamiento farmacológico
8.
Adv Exp Med Biol ; 1051: 139-168, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815513

RESUMEN

The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Polimorfismo Genético , Receptores Purinérgicos P2 , Animales , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 3/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Ratones Noqueados , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Relación Estructura-Actividad
9.
Subcell Biochem ; 76: 375-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26219721

RESUMEN

New evidences have been reported that point to the ecto-enzyme, tissue-nonspecific alkaline phosphatase (TNAP), as a key element at the origin of two opposite phenomena, neuronal differentiation and neuronal degeneration. During brain development, TNAP plays an essential role for establishing neuronal circuits. The pro-neuritic effect induced by TNAP, which results in axonal length increase, is due to its enzymatic hydrolysis of extracellular ATP at the surrounding area of the axonal growth cone . In this way, the activation of P2X7 receptor is prevented and as a consequence there is no inhibition of axonal growth. The existence of a close functional interrelation between both purinergic elements is finally supported by the fact that both elements may control, in a reciprocal way, the expression level of the other. On the opposite stage, recent evidences indicate that TNAP plays a key role in spreading the neurotoxicity effect induced by extracellular hyperphosphorylated tau protein, the main component of intracellular neurofibrillary tangles present in the brain of Alzheimer disease patients. TNAP exhibits a broad substrate specificity and in addition to nucleotides it is able to dephosphorylate extracellular proteins, such as the hyperphosphorylated tau protein once it is released to the extracellular medium. Dephosphorylated tau protein behaves as an agonist of muscarinic M1 and M3 receptors, provoking a robust and sustained intracellular calcium increase that finally triggering neuronal death. Besides, activation of muscarinic receptors by dephosphorylated tau increases the expression of TNAP, which could explain the increase in TNAP activity and protein levels detected in Alzheimer disease.


Asunto(s)
Fosfatasa Alcalina/fisiología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/genética , Neurogénesis/genética , Animales , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Humanos
10.
Mol Vis ; 21: 1060-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26392744

RESUMEN

PURPOSE: To study retinal extracellular ATP levels and to assess the changes in the vesicular nucleotide transporter (VNUT) expression in a murine model of glaucoma during the development of the disease. METHODS: Retinas were obtained from glaucomatous DBA/2J mice at 3, 9, 15, and 22 months together with C57BL/6J mice used as age-matched controls. To study retinal nucleotide release, the retinas were dissected and prepared as flattened whole mounts and stimulated in Ringer buffer with or without 59 mM KCl. To investigate VNUT expression, sections of the mouse retinas were evaluated with immunohistochemistry and western blot analysis using newly developed antibodies against VNUT. All images were examined and photographed under confocal microscopy. Electroretinogram (ERG) recordings were performed on the C57BL/6J and DBA/2J mice to analyze the changes in the electrophysiological response; a decrease in the scotopic threshold response was observed in the 15-month-old DBA/2J mice. RESULTS: In the 15-month-old control and glaucomatous mice, electrophysiological changes of 42% were observed. In addition, 50% increases in the intraocular pressure (IOP) were observed when the pathology was fully established. The responses in the retinal ATP net release as the pathology progressed varied from 0.32±0.04 pmol/retina (3 months) to 1.10±0.06 pmol/retina (15 months; threefold increase). Concomitantly, VNUT expression was significantly increased during glaucoma progression in the DBA/2J mice (58%) according to the immunohistochemical and western blot analysis. CONCLUSIONS: These results may indicate a possible correlation between retinal dysfunction and increased levels of extracellular ATP and nucleotide transporter. These data support an excitotoxicity role for ATP via P2X7R in glaucoma. This modified cellular environment could contribute to explaining the functional and biochemical alterations observed during the development of the pathology.


Asunto(s)
Adenosina Trifosfato/metabolismo , Envejecimiento/metabolismo , Glaucoma/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Retina/metabolismo , Animales , Transporte Biológico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electrorretinografía , Femenino , Expresión Génica , Glaucoma/genética , Glaucoma/patología , Presión Intraocular , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteínas de Transporte de Nucleótidos/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Retina/patología , Tonometría Ocular
11.
J Immunol ; 190(8): 4226-35, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23479225

RESUMEN

Extracellular nucleotides have been recognized as important modulators of inflammation via their action on specific pyrimidine receptors (P2). This regulation coexists with the temporal framework of proinflammatory and proresolution mediators released by the cells involved in the inflammatory response, including macrophages. Under proinflammatory conditions, the expression of cyclooxygenase-2 leads to the release of large amounts of PGs, such as PGE2, that exert their effects through EP receptors and other intracellular targets. The effect of these PGs on P2 receptors expressed in murine and human macrophages was investigated. In thioglycollate-elicited and alternatively activated macrophages, PGE2 selectively impairs P2Y but not P2X7 Ca(2+) mobilization. This effect is absent in LPS-activated cells and is specific for PGE2 because it cannot be reproduced by other PGs with cyclopentenone structure. The inhibition of P2Y responses by PGE2 involves the activation of nPKCs (PKCε) and PKD that can be abrogated by selective inhibitors or by expression of dominant-negative forms of PKD. The inhibition of P2Y signaling by PGE2 has an impact on the cell migration elicited by P2Y agonists in thioglycollate-elicited and alternatively activated macrophages, which provide new clues to understand the resolution phase of inflammation, when accumulation of PGE2, anti-inflammatory and proresolving mediators occurs.


Asunto(s)
Calcio/fisiología , Dinoprostona/fisiología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Receptores Purinérgicos P2Y/fisiología , Transducción de Señal/inmunología , Animales , Señalización del Calcio/inmunología , Células Cultivadas , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Purinérgicos P2Y/deficiencia , Receptores Purinérgicos P2Y/metabolismo
12.
J Neurochem ; 131(3): 290-302, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24947519

RESUMEN

Neuro-2a (N2a) neuroblastoma cells display an ectoenzymatic hydrolytic activity capable of degrading diadenosine polyphosphates. The Apn A-cleaving activity has been analysed with the use of the fluorogenic compound BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester. Hydrolysis of this dinucleotide analogue showed a hyperbolic kinetic with a Km value of 4.9 ± 1.3 µM. Diadenosine pentaphosphate, diadenosine tetraphosphate, diadenosine triphosphate, and the nucleoside monophosphate AMP behaved as an inhibitor of BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester extracellular degradation. Ectoenzymatic activity shared the typical characteristics of the ectonucleotide pyrophosphatase/phosphodiesterase family, as hydrolysis reached maximal activity at alkaline pH and was dependent on the presence of divalent cations, being strongly inhibited by EDTA and activated by Zn(2+) ions. Both NPP1 and NPP3 isozymes are expressed in N2a cells, their expression levels substantially changing when cells differentiate into a neuronal-like phenotype. In this sense, it is relevant to point the expression pattern of the NPP3 protein, whose levels were drastically reduced in the differentiated cells, being almost completely absent after 24 h of differentiation. Enzymatic activity assays carried out with differentiated N2a cells showed that NPP1 is the main isozyme involved in the extracellular degradation of dinucleotides in these cells, this enzyme reducing its activity and changing its subcellular location following neuronal differentiation. We described the presence of an ectoenzymatic activity able to hydrolyse diadenosine polyphosphates (ApnA) in N2a cells. This activity displays biochemical features that are typical of the ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) family members, as demonstrated by the use of the fluorogenic compound BODIPY-FL-GTPγS. Both NPP1 and NPP3 ectoenzymes are expressed in N2a cells, their levels dramatically changing when cells differentiate into a neuronal-like phenotype. Activity assays in differentiated cells showed that the ApnA-hydrolytic activity largely depends on the NPP1 isozyme.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Neuroblastoma/enzimología , Neuroblastoma/patología , Neuronas/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Humanos , Isoenzimas , Nucleótidos/metabolismo
13.
J Cell Sci ; 125(Pt 1): 176-88, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250198

RESUMEN

In adult brains, ionotropic or metabotropic purinergic receptors are widely expressed in neurons and glial cells. They play an essential role in inflammation and neurotransmission in response to purines secreted to the extracellular medium. Recent studies have demonstrated a role for purinergic receptors in proliferation and differentiation of neural stem cells although little is known about their role in regulating the initial neuronal development and axon elongation. The objective of our study was to investigate the role of some different types of purinergic receptors, P2Y1, P2Y13 and P2X7, which are activated by ADP or ATP. To study the role and crosstalk of P2Y1, P2Y13 and P2X7 purinergic receptors in axonal elongation, we treated neurons with specific agonists and antagonists, and we nucleofected neurons with expression or shRNA plasmids. ADP and P2Y1-GFP expression improved axonal elongation; conversely, P2Y13 and ATP-gated P2X7 receptors halted axonal elongation. Signaling through each of these receptor types was coordinated by adenylate cyclase 5. In neurons nucleofected with a cAMP FRET biosensor (ICUE3), addition of ADP or Blue Brilliant G, a P2X7 antagonist, increased cAMP levels in the distal region of the axon. Adenylate cyclase 5 inhibition or suppression impaired these cAMP increments. In conclusion, our results demonstrate a crosstalk between two metabotropic and one ionotropic purinergic receptor that regulates cAMP levels through adenylate cyclase 5 and modulates axonal elongation triggered by neurotropic factors and the PI3K-Akt-GSK3 pathway.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Ciclasas/metabolismo , Axones/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Adenosina Difosfato/farmacología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Forma de la Célula/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2/metabolismo , Colorantes de Rosanilina/farmacología
14.
Mediators Inflamm ; 2014: 832103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25214717

RESUMEN

The nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2 in P2Y signaling in mouse embryonic fibroblasts (MEFs), since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca(2+)-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2 when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2 was added exogenously to the culture medium. This Ca(2+)-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2 involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2 reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2 is involved in the regulation of P2Y signaling in these cells.


Asunto(s)
Calcio/metabolismo , Ciclooxigenasa 2/metabolismo , Fibroblastos/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animales , Núcleo Celular/metabolismo , Inmunoensayo , Ratones , Ratones Endogámicos C57BL
15.
J Pharmacol Exp Ther ; 347(3): 802-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24101734

RESUMEN

The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.


Asunto(s)
Astrocitos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Cerebelo/citología , Receptores Purinérgicos P2X7/fisiología , Animales , Animales Recién Nacidos , Astrocitos/ultraestructura , Benzoxazoles/metabolismo , Western Blotting , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/ultraestructura , Citosol/metabolismo , Femenino , Colorantes Fluorescentes , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleótidos/farmacología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Compuestos de Quinolinio/metabolismo , Receptores Purinérgicos P2X7/efectos de los fármacos
16.
Epilepsia ; 54(9): 1551-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23808395

RESUMEN

PURPOSE: ATP is an essential transmitter/cotransmitter in neuron function and pathophysiology and has recently emerged as a potential contributor to prolonged seizures (status epilepticus) through the activation of the purinergic ionotropic P2X7 receptor (P2X7R). Increased P2X7R expression has been reported in the hippocampus, and P2X7R antagonists reduced seizure-induced damage to this brain region. However, status epilepticus also produces damage to the neocortex. The present study was designed to characterize P2X7R in the neocortex and assess effects of P2X7R antagonists on cortical injury after status epilepticus. METHODS: Status epilepticus was induced in mice by intraamygdala microinjection of kainic acid. Specific P2X7R inhibitors were administered into the ventricle before seizure induction, and cortical electroencephalography and behavior was recorded to assess seizure severity. P2X7R expression was examined in neocortex up to 24 h after status epilepticus, in epileptic mice, and in resected neocortex from patients with pharmacoresistent temporal lobe epilepsy (TLE). In addition, the induction of P2X7R after status epilepticus was investigated using transgenic P2X7R reporter mice, which express enhanced green fluorescent protein under the control of the p2x7r promoter. KEY FINDINGS: Status epilepticus resulted in increased P2X7R protein levels in the neocortex of mice. Neocortical P2X7 receptor levels were also elevated in mice that developed epilepsy after status epilepticus and in resected neocortex from patients with pharmacoresistent TLE. Immunohistochemistry determined that neurons were the major cell population transcribing the P2X7R in the neocortex within the first 8 h after status epilepticus, whereas in epileptic mice, P2X7R up-regulation occurred in microglia as well as in neurons. Pretreatment of mice with the specific P2X7R inhibitor A-438079 reduced electrographic and clinical seizure severity during status epilepticus and reduced seizure-induced neuronal death in the neocortex. SIGNIFICANCE: Our findings identify neurons in the neocortex as an important site of P2X7R up-regulation after status epilepticus and in epilepsy, and provide support for the possible use of P2X7R antagonists for the treatment of status epilepticus and prevention of seizure-induced brain damage.


Asunto(s)
Anticonvulsivantes/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/metabolismo , Convulsiones/tratamiento farmacológico , Estado Epiléptico/metabolismo , Tetrazoles/farmacología , Animales , Muerte Celular/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Ratones , Ratones Transgénicos , Neocórtex/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Regulación hacia Arriba/efectos de los fármacos
17.
J Biol Chem ; 286(12): 10712-24, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21245148

RESUMEN

The sodium- and chloride-coupled glycine neurotransmitter transporters (GLYTs) control the availability of glycine at glycine-mediated synapses. The mainly glial GLYT1 is the key regulator of the glycine levels in glycinergic and glutamatergic pathways, whereas the neuronal GLYT2 is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft. In this study, we report that stimulation of P2Y purinergic receptors with 2-methylthioadenosine 5'-diphosphate in rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes leads to the inhibition of GLYT2 and the stimulation of GLYT1 by a paracrine regulation. These effects are mainly mediated by the ADP-preferring subtypes P2Y(1) and P2Y(13) because the effects are partially reversed by the specific antagonists N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate and pyridoxal-5'-phosphate-6-azo(2-chloro-5-nitrophenyl)-2,4-disulfonate and are totally blocked by suramin. P2Y(12) receptor is additionally involved in GLYT1 stimulation. Using pharmacological approaches and siRNA-mediated protein knockdown methodology, we elucidate the molecular mechanisms of GLYT regulation. Modulation takes place through a signaling cascade involving phospholipase C activation, inositol 1,4,5-trisphosphate production, intracellular Ca(2+) mobilization, protein kinase C stimulation, nitric oxide formation, cyclic guanosine monophosphate production, and protein kinase G-I (PKG-I) activation. GLYT1 and GLYT2 are differentially sensitive to NO/cGMP/PKG-I both in brain-derived preparations and in heterologous systems expressing the recombinant transporters and P2Y(1) receptor. Sensitivity to 2-methylthioadenosine 5'-diphosphate by GLYT1 and GLYT2 was abolished by small interfering RNA (siRNA)-mediated knockdown of nitric-oxide synthase. Our data may help define the role of GLYTs in nociception and pain sensitization.


Asunto(s)
Tronco Encefálico/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Glicina/metabolismo , Neurotransmisores/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2/metabolismo , Médula Espinal/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Tronco Encefálico/citología , Células Cultivadas , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Neuronas , Dolor/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Fosfolipasas de Tipo C/metabolismo
18.
J Biol Chem ; 286(13): 11370-81, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21292765

RESUMEN

Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio , Exocitosis , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Vesículas Secretoras/metabolismo , Animales , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/genética , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Ionomicina/farmacología , Ionóforos/farmacología , Ratones , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patología , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/genética , Receptores Purinérgicos P2X7/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/patología , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
19.
Exp Eye Res ; 101: 49-55, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22677090

RESUMEN

The ability of diinosine polyphosphates, diinosine triphosphate (Ip(3)I), diinosine tetraphosphate (Ip(4)I) and diinosine pentaphosphate (Ip(5)I) to modify intraocular pressure in normotensive New Zealand white rabbits was tested. Ip(5)I produced increase in intraocular pressure, while Ip(3)I and Ip(4)I produced a decrease. Ip(4)I was the most effective reducing intraocular pressure inducing a maximal decrease of intraocular pressure to 74.2 ± 2.5% compared with the control value. Dose-response analysis demonstrated a concentration dependent pattern which presented a pD(2) value of 6.19 ± 0.18, equivalent to an EC(50) of 0.63 µM. Regarding the underlying mechanism used by Ip(4)I to reduce intraocular pressure, studies with agonists and antagonists revealed that Ip(4)I reduces intraocular pressure via P2Y receptors in the eye. We suggest that topical application of Ip(4)I to the cornea has therapeutic potential for lowering intraocular pressure, a major risk factor for glaucoma.


Asunto(s)
Fosfatos de Dinucleósidos/farmacología , Inosina/análogos & derivados , Presión Intraocular/efectos de los fármacos , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Masculino , Conejos , Receptores Purinérgicos P2Y/metabolismo , Tonometría Ocular
20.
Cerebellum ; 11(1): 62-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20694539

RESUMEN

Extracellular purines exert their action in the nervous system through purinergic neurotransmission and neuromodulatory processes. Among brain areas, efforts have been made to investigate the purinergic modulation of the cerebellar cortex. In addition, the use of granule cells in culture as a neuronal in vitro model provided important information about the implications of purines in mechanisms such as cell survival and differentiation. This short review is focused on the function of purines in the physiology of granule cells in situ and in vitro. In situ, adenosine has been shown to inhibit some of the glutamatergic and GABAergic synaptic inputs to granule cells. The inhibition of GABA input allows an increase in the excitability of the cell while the output (parallel fibers) of granule cells is also down-regulated by adenosine, suggesting a complex mode of regulation by purines. In vitro, granule cells have been shown to express members of all classes of purinergic receptors, P2X (ionotropic), P2Y (metabotropic) and adenosine receptors. The specific expression of these receptors and the downstream signaling pathways coupling them to cell survival and growth have been extensively studied.


Asunto(s)
Adenosina/fisiología , Corteza Cerebelosa/metabolismo , Gránulos Citoplasmáticos/fisiología , Neuronas/metabolismo , Neurotransmisores/fisiología , Receptores Purinérgicos/fisiología , Adenosina/metabolismo , Animales , Corteza Cerebelosa/citología , Gránulos Citoplasmáticos/metabolismo , Humanos , Neuronas/citología , Neurotransmisores/metabolismo , Receptores Purinérgicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA