Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403863, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073295

RESUMEN

A bio-inspired approach to fabricate robust superhydrophobic (SHB) surfaces with anisotropic properties replicated from a leek leaf is presented. The polydimethylsiloxane (PDMS) replica surfaces exhibit anisotropic wetting, anti-icing, and light scattering properties due to microgrooves replicated from leek leaves. Superhydrophobicity is achieved by a novel modified candle soot (CS) coating that mimics leek's epicuticular wax. The resulting surfaces show a contact angle (CA) difference of ≈30° in the directions perpendicular and parallel to the grooves, which is similar to the anisotropic properties of the original leek leaf. The coated replica is durable, withstanding cyclic bending tests (up to 10 000 cycles) and mechanical sand abrasion (up to 60 g of sand). The coated replica shows low ice adhesion (10 kPa) after the first cycle; and then, increases to ≈70 kPa after ten icing-shearing cycles; while, anisotropy in ice adhesion becomes more evident with more cycles. In addition, the candle soot-coated positive replica (CS-coated PR) demonstrates a transmittance of ≈73% and a haze of ≈65% at the wavelength of 550 nm. The results show that the properties depend on the replicated surface features of the leek leaf, which means that the leek leaf appears to be a highly useful template for bioinspired surfaces.

2.
Sci Rep ; 11(1): 12646, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135443

RESUMEN

A polydimethylsiloxane (PDMS)/Cu superhydrophobic composite material is fabricated by wet etching, electroless plating, and polymer casting. The surface topography of the material emerges from hierarchical micro/nanoscale structures of etched aluminum, which are rigorously copied by plated copper. The resulting material is superhydrophobic (contact angle > 170°, sliding angle < 7° with 7 µL droplets), electrically conductive, elastic and wear resistant. The mechanical durability of both the superhydrophobicity and the metallic conductivity are the key advantages of this material. The material is robust against mechanical abrasion (1000 cycles): the contact angles were only marginally lowered, the sliding angles remained below 10°, and the material retained its superhydrophobicity. The resistivity varied from 0.7 × 10-5 Ωm (virgin) to 5 × 10-5 Ωm (1000 abrasion cycles) and 30 × 10-5 Ωm (3000 abrasion cycles). The material also underwent 10,000 cycles of stretching and bending, which led to only minor changes in superhydrophobicity and the resistivity remained below 90 × 10-5 Ωm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA