Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7978): 415-422, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674080

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN , Mitosis , Proteínas Serina-Treonina Quinasas , Humanos , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Mutaciones Letales Sintéticas , ADN Polimerasa theta , Quinasa Tipo Polo 1
2.
Nucleic Acids Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828772

RESUMEN

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.

4.
Nucleic Acids Res ; 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38142462

RESUMEN

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.

5.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26774283

RESUMEN

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Emparejamiento Base , ADN/metabolismo , Daño del ADN , Reparación del ADN por Unión de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Complejo Shelterina , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química
6.
Nucleic Acids Res ; 49(7): 3841-3855, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744941

RESUMEN

Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.


Asunto(s)
Proteínas de Unión al ADN , ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
7.
Nucleic Acids Res ; 44(4): 1962-76, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26748096

RESUMEN

Telomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments.


Asunto(s)
Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Proteínas de Unión a Telómeros/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Complejos Multiproteicos , Unión Proteica , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
8.
Nucleic Acids Res ; 40(7): 3197-207, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22139930

RESUMEN

Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.


Asunto(s)
ADN/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Unión a Telómeros/química , Factores de Transcripción/química , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Complejo Shelterina , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Difracción de Rayos X
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 409-19, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23519416

RESUMEN

Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.


Asunto(s)
ADN de Hongos/química , ADN de Hongos/metabolismo , Permanganato de Potasio/química , Permanganato de Potasio/farmacología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Unión a Telómeros/química , Factores de Transcripción/química , Arginina/química , Cristalografía por Rayos X , Citosina/química , ADN de Hongos/efectos de los fármacos , Enlace de Hidrógeno/efectos de los fármacos , Conformación de Ácido Nucleico/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Soluciones , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980188

RESUMEN

Barrier-to-autointegration factor (BAF) is an essential component of the nuclear lamina. Encoded by BANF1, this DNA binding protein contributes to the regulation of gene expression, cell cycle progression, and nuclear integrity. A rare recessive BAF variant, Ala12Thr, causes the premature aging syndrome, Néstor-Guillermo progeria syndrome (NGPS). Here, we report the first dominant pathogenic BAF variant, Gly16Arg, identified in a patient presenting with progressive neuromuscular weakness. Although disease variants carry nearby amino acid substitutions, cellular and biochemical properties are distinct. In contrast to NGPS, Gly16Arg patient fibroblasts show modest changes in nuclear lamina structure and increases in repressive marks associated with heterochromatin. Structural studies reveal that the Gly16Arg substitution introduces a salt bridge between BAF monomers, reducing the conformation ensemble available to BAF. We show that this structural change increases the double-stranded DNA binding affinity of BAF Gly16Arg. Together, our findings suggest that BAF Gly16Arg has an increased chromatin occupancy that leads to epigenetic changes and impacts nuclear functions. These observations provide a new example of how a missense mutation can change a protein conformational equilibrium to cause a dominant disease and extend our understanding of mechanisms by which BAF function impacts human health.


Asunto(s)
Núcleo Celular , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Cromatina , Proteínas de Unión al ADN/metabolismo , Fibrinógeno
11.
Sci Adv ; 9(43): eadi7352, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889963

RESUMEN

In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.


Asunto(s)
Recombinación Homóloga , Recombinasa Rad51 , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Daño del ADN
12.
Mol Microbiol ; 82(1): 54-67, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21902732

RESUMEN

Tah18-Dre2 is a recently identified yeast protein complex, which is highly conserved in human and has been implicated in the regulation of oxidative stress induced cell death and in cytosolic Fe-S proteins synthesis. Tah18 is a diflavin oxido-reductase with binding sites for flavin mononucleotide, flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, which is able to transfer electrons to Dre2 Fe-S clusters. In this work we characterized in details the interaction between Tah18 and Dre2, and analysed how it conditions yeast viability. We show that Dre2 C-terminus interacts in vivo and in vitro with the flavin mononucleotide- and flavin adenine dinucleotide-binding sites of Tah18. Neither the absence of the electron donor nicotinamide adenine dinucleotide phosphate-binding domain in purified Tah18 nor the absence of Fe-S in aerobically purified Dre2 prevents the binding in vitro. In vivo, when this interaction is affected in a dre2 mutant, yeast viability is reduced. Conversely, enhancing artificially the interaction between mutated Dre2 and Tah18 restores cellular viability despite still reduced cytosolic Fe-S cluster biosynthesis. We conclude that Tah18-Dre2 interaction in vivo is essential for yeast viability. Our study may provide new insight into the survival/death switch involving this complex in yeast and in human cells.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Viabilidad Microbiana , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Hierro-Azufre/genética , Oxidorreductasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Cell Proteomics ; 9(12): 2745-59, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20733106

RESUMEN

Small and large scale proteomic technologies are providing a wealth of potential interactions between proteins bearing phospho-recognition modules and their substrates. Resulting interaction maps reveal such a dense network of interactions that the functional dissection and understanding of these networks often require to break specific interactions while keeping the rest intact. Here, we developed a computational strategy, called STRIP, to predict the precise interaction site involved in an interaction with a phospho-recognition module. The method was validated by a two-hybrid screen carried out using the ForkHead Associated (FHA)1 domain of Rad53, a key protein of Saccharomyces cerevisiae DNA checkpoint, as a bait. In this screen we detected 11 partners, including Cdc7 and Cdc45, essential components of the DNA replication machinery. FHA domains are phospho-threonine binding modules and the threonines involved in both interactions could be predicted using the STRIP strategy. The threonines T484 and T189 in Cdc7 and Cdc45, respectively, were mutated and loss of binding could be monitored experimentally with the full-length proteins. The method was further tested for the analysis of 63 known Rad53 binding partners and provided several key insights regarding the threonines likely involved in these interactions. The STRIP method relies on a combination of conservation, phosphorylation likelihood, and binding specificity criteria and can be accessed via a web interface at http://biodev.extra.cea.fr/strip/.


Asunto(s)
Fosfoproteínas/metabolismo , Proteómica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Replicación del ADN , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Mutación , Fosforilación , Plásmidos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
Biochemistry ; 50(29): 6409-22, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21714500

RESUMEN

Cdc31, the Saccharomyces cerevisiae centrin, is an EF-hand calcium-binding protein essential for the cell division and mRNA nuclear export. We used biophysical techniques to investigate its calcium, magnesium, and protein target binding properties as well as their conformations in solution. We show here that Cdc31 displays one Ca(2+)/Mg(2+) mixed site in the N-terminal domain and two low-affinity Ca(2+) sites in the C-terminal domain. The affinity of Cdc31 for different natural target peptides (from Kar1, Sfi1, Sac3) that we obtained by isothermal titration calorimetry shows weakly Ca(2+), but also Mg(2+) dependence. The characteristics of target surface binding were shown to be similar; we highlight that the 1-4 hydrophobic amino acid motif, in a stable amphipathic α-helix, is critical for binding. Ca(2+) and Mg(2+) binding increase the α-helix content and stabilize the structure. Analysis of small-angle X-ray scattering experiments revealed that N- and C-terminal domains are not individualized in apo-Cdc31; in contrast, they are separated in the Mg(2+) state, creating a groove in the middle of the molecule that is occupied by the target peptide in the liganded form. Consequently, Mg(2+) seems to have consequences on Cdc31's function and could be important to stimulate interactions in resting cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Magnesio/metabolismo , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/química , Calorimetría , Proteínas de Ciclo Celular/química , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Termodinámica
15.
J Biol Chem ; 285(34): 26475-83, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20558749

RESUMEN

In mammals, the majority of DNA double-strand breaks are processed by the nonhomologous end-joining (NHEJ) pathway, composed of seven factors: Ku70, Ku80, DNA-PKcs, Artemis, Xrcc4 (X4), DNA-ligase IV (L4), and Cernunnos/XLF. Cernunnos is part of the ligation complex, constituted by X4 and L4. To improve our knowledge on the structure and function of Cernunnos, we performed a systematic mutagenesis study on positions selected from an analysis of the recent three-dimensional structures of this factor. Ten of 27 screened mutants were nonfunctional in several DNA repair assays. Outside amino acids critical for the expression and stability of Cernunnos, we identified three amino acids (Arg(64), Leu(65), and Leu(115)) essential for the interaction with X4 and the proper function of Cernunnos. Docking the crystal structures of the two factors further validated this probable interaction surface of Cernunnos with X4.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína
16.
BMC Struct Biol ; 11: 24, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21569443

RESUMEN

BACKGROUND: Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. RESULTS: In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. CONCLUSIONS: NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.


Asunto(s)
Calcio/química , Calmodulina/química , Combinación Trimetoprim y Sulfametoxazol/química , Secuencia de Aminoácidos , Sitios de Unión , Calmodulina/antagonistas & inhibidores , Simulación por Computador , Diseño de Fármacos , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Combinación Trimetoprim y Sulfametoxazol/antagonistas & inhibidores
17.
Sci Rep ; 11(1): 12086, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103632

RESUMEN

During the processing of biomolecules by ultrafiltration, the lysozyme enzyme undergoes conformational changes, which can affect its antibacterial activity. Operational conditions are considered to be one of the main parameters responsible for such changes, especially when using the same membrane and molecule. The present study demonstrates that, the same cut-off membrane (commercial data) can result in different properties of the protein after filtration, due to their different pore network. The filtration of lysozyme, regardless of the membrane, produces a decrease in the membrane hydraulic permeability (between 10 and 30%) and an increase in its selectivity in terms of observed rejection rate (30%). For the filtrated lysozyme, it appears that the HPLC retention time increases depending on the membrane used. The antibacterial activity of the filtrated samples is lower than the native protein and decreases with the increase of the applied pressure reaching 55-60% loss for 12 bar which has not been reported in the literature before. The observed results by SEC-HPLC and bacteriological tests, suggest that the conformation of the filtrated molecules are indeed modified. These results highlight the relationship between protein conformation or activity and the imposed shear stress.


Asunto(s)
Antibacterianos/química , Membranas Artificiales , Muramidasa/química , Presión , Ultrafiltración
18.
Nat Commun ; 12(1): 2763, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980827

RESUMEN

Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencias de Aminoácidos , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/química , Exodesoxirribonucleasas/química , Modelos Moleculares , Complejos Multiproteicos , Mutación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética
19.
Nat Commun ; 12(1): 4605, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326328

RESUMEN

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espermatogénesis/fisiología , Animales , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cristalografía por Rayos X/métodos , Femenino , Recombinación Homóloga , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Meiosis , Ratones , Modelos Animales , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia
20.
Biochemistry ; 49(20): 4383-94, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20408559

RESUMEN

Centrins are calcium binding proteins that belong to the EF-hand (or calmodulin) superfamily, which are highly conserved among eukaryotes. Herein, we report the molecular features and binding properties of the green alga Scherffelia dubia centrin (SdCen), a member of the Chlamydomonas reinhardtii centrin (CrCen) subfamily. The Ca(2+) binding capacity of SdCen and its isolated N- and C-terminal domains (N-SdCen and C-SdCen, respectively) was investigated using flow dialysis and isothermal titration calorimetry. In contrast with human centrin 1 and 2 (from the same subfamily), but like CrCen, SdCen exhibits three physiologically significant Ca(2+) binding sites, two in the N-terminal domain and one in the C-terminal domain. Mg(2+) ions could compete with Ca(2+) in one of the N-terminal sites. When Ca(2+) binds, the N-terminal domain becomes more stable and exposes a significant hydrophobic surface that binds hydrophobic fluorescent probes. The Ca(2+) binding properties and the metal ion-induced structural changes in the C-terminal domain are comparable to those of human centrins. We used isothermal titration calorimetry to quantify the binding of SdCen, N-SdCen, and C-SdCen to three types of natural target peptides, derived from the human XPC protein (P17-XPC), the human Sfi1 protein (R17-hSfi1), and the yeast Kar1 protein (P19-Kar1). The three peptides possess the complete (P17-XPC and R17-hSfi1) or partial (P19-Kar1) centrin binding motif (W(1)L(4)L(8)). The integral SdCen exhibits two binding sites for each target peptide, with distinct affinities for each site and each peptide. The high-affinity peptide binding site corresponds to the C-terminal domain of SdCen and displays binding constants and the poor Ca(2+) sensitivities similar to those observed for human centrins. The low-affinity site constituted by the N-terminal domain is active only in the presence of Ca(2+). The thermodynamic binding parameters suggest that the C-terminal domain of SdCen may be constitutively bound to a target, while the N-terminal domain could bind a target only after a Ca(2+) signal. SdCen is also able to interact with calmodulin binding peptides (W(1)F(5)V(8)F(14) motif) with a 1:1 stoichiometry, whereas the isolated N- and C-terminal domains have a much lower affinity. These data suggest particular molecular mechanisms used by SdCen (and probably by other algal centrins) to respond to cellular Ca(2+) signals.


Asunto(s)
Calcio/farmacología , Chlorophyta/metabolismo , Combinación Trimetoprim y Sulfametoxazol/química , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/efectos de los fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Magnesio/farmacología , Meliteno/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA