Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 75(16): 5111-5129, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38770693

RESUMEN

Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Deshidratación , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Transducción de Señal , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácido Abscísico/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Estrés Fisiológico , Proteínas Nucleares
2.
Biotechnol Bioeng ; 120(1): 82-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36224758

RESUMEN

Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Plantas/genética , Ingeniería Metabólica , Fitoquímicos
3.
Physiol Plant ; 174(2): e13642, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35099818

RESUMEN

The rice and wheat agricultural system is the primary source of food for billions across the world. However, the productivity and long-term sustainability of rice and wheat are threatened by a large number of abiotic stresses, especially salinity stress. Salinity has a significant impact on plant development and productivity and is one of the leading causes of crop yield losses in agricultural soils worldwide. Over the last few decades, several attempts have been undertaken to enhance salinity stress tolerance, most of which have relied on traditional or molecular breeding approaches. These approaches have so far been insufficient in addressing the issues of abiotic stress. However, due to the availability of genome sequences for cereal crops like rice and wheat and the development of genome editing techniques like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), it is now possible to "edit" genes and influence key traits. Here, we review the application of the CRISPR/Cas9 system in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.) to develop salinity tolerant cultivars. The CRISPR/Cas genome editing toolkit holds great promise of producing cereal crops tolerant to salt stress to increase agriculture resilience with a strong impact on the environment and public health.


Asunto(s)
Oryza , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Grano Comestible/genética , Genoma de Planta/genética , Oryza/genética , Tolerancia a la Sal/genética , Triticum/genética
5.
Front Pharmacol ; 13: 824132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645819

RESUMEN

Background: COPD (chronic obstructive pulmonary disease) is a serious health problem worldwide. Present treatments are insufficient and have severe side effects. There is a critical shortage of possible alternative treatments. Medicinal herbs are the most traditional and widely used therapy for treating a wide range of human illnesses around the world. In several countries, different plants are used to treat COPD. Purpose: In this review, we have discussed several known cellular and molecular components implicated in COPD and how plant-derived chemicals might modulate them. Methods: We have discussed how COVID-19 is associated with COPD mortality and severity along with the phytochemical roles of a few plants in the treatment of COPD. In addition, two tables have been included; the first summarizes different plants used for the treatment of COPD, and the second table consists of different kinds of phytochemicals extracted from plants, which are used to inhibit inflammation in the lungs. Conclusion: Various plants have been found to have medicinal properties against COPD. Many plant extracts and components may be used as novel disease-modifying drugs for lung inflammatory diseases.

6.
Biomed Pharmacother ; 145: 112378, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741824

RESUMEN

Neoechinulins are fungal and plant-derived chemicals extracted from Microsporum sp., Eurotium rubrum, Aspergillus sp., etc. Two analogues of neoechinulin, i.e., A and B, exerted extensive pharmacological properties described in this review. Neoechinulin is an indole alkaloid and has a double bond between C8/C9, which tends to contribute to its cytoprotective nature. Neoechinulin A exhibits protection to PC12 cells against nitrosative stress via increasing NAD(P)H reserve capacity and decreasing cellular GSH levels. It also confers protection via rescuing PC12 cells from rotenone-induced stress by lowering LDH leakage. This compound has great positive potential against neurodegenerative diseases by inhibiting SIN-1 induced cell death in neuronal cells. Together with these, neoechinulin A tends to inhibit Aß42-induced microglial activation and confers protection against neuroinflammation. Alongside, it also inhibits cervical cancer cells by caspase-dependent apoptosis and via upregulation of apoptosis inducing genes like Bax, it suppresses LPS-induced inflammation in RAW264.7 macrophages and acts as an antidepressant. Whereas, another analogue, Neoechinulin B tends to interfere with the cellular mechanism thereby, inhibiting the entry of influenza A virus and it targets Liver X receptor (LXR) and decreases the infection rate of Hepatitis C. The present review describes the pharmaceutical properties of neoechinulins with notes on their molecular, cellular, and functional basis and their therapeutic properties.


Asunto(s)
Alcaloides/farmacología , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Piperazinas/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Humanos , Inflamación/patología , Ratones , Neoplasias/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Células PC12 , Piperazinas/química , Piperazinas/aislamiento & purificación , Células RAW 264.7 , Ratas
7.
Front Pharmacol ; 12: 772418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069196

RESUMEN

Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA